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These notes consist of two lectures on Hitchin’s paper The Self Duality Equations on a Riemann Surface
[Hit87]. The first will discuss the derivation of the equation and construction of the moduli space; the second
will discuss its topological and geometric properties. I will focus on the results as they are found in Hitchin’s
paper, but also occasionally hint at how these results generalise.

For those interested in learning more, Andy Neitzke has notes on his website from a course he taught on
the moduli of Higgs bundles. A direct link is: https://web.ma.utexas.edu/users/neitzke/teaching/

392C-higgs-bundles/higgs-bundles.pdf
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1 Lecture 1: Construction of the moduli space

1.1 Derivation of Hitchin’s equations

For most of these lectures I will restrict to the groups SU(2)/SO(3) (as in [Hit87]). For the derivation of the
equations, however, no such restriction is necessary.
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Our initial goal is to derive Hitchin’s equations from four-dimensional gauge theory. Start with the data of

(P,∇)

R4

a principal G-bundle with connection.

Denote the curvature 2-form by F∇ ∈ Ω2
R4(ad(P )). Give R4 its standard Euclidean metric g, and consider

the Hodge star

? : Ω2
R4(ad(P ))→ Ω2

R4(ad(P ))

Tr(α ∧ ?β) = Tr(g(α, β))dvol.

We can split F∇ into its self dual and anti-self dual components,

F±∇ =
1

2
(F∇ ± ?F∇), ?F±∇ = ±F±∇ .

Now consider the action for 4d pure Yang-Mills,

S =
1

2e2

∫
Tr(F∇ ∧ ?F∇).

We want to find critical points for this action functional. Observe that

1

e2

∫
F∓ ∧ F∓ =

1

2e2

∫
Tr(F ∧ F )︸ ︷︷ ︸

topological – “instanton number”

∓ 1

2e2

∫
Tr(F ∧ ?F )︸ ︷︷ ︸
=S

=
8π2

e2
k ∓ S

for some k ∈ Z.1 Since ?F± = ±F±, this gives us the inequality

S ≥ 8π2

e2
|k|

with equality iff

F = F+ (k > 0), (1.1)

F = F− (k < 0). (1.2)

These are the self dual (1.1) and anti-self dual (1.2) Yang-Mills equations.2

Let’s focus on (1.1), i.e. F = ?F . Following Hitchin, we want to dimensionally reduce this equation to 2d by
considering solutions which are translationally invariant along a plane. Choosing a trivialisation of P and
taking the standard coordinates (x1, x2, x3, x4) on R4, we can write

∇ = d+A·,
A = Aµdx

µ

for Aµ : R4 → g. We can then express the curvature form as

FA = dA+
1

2
[A ∧A].

Now, let’s restrict to solutions which are invariant in the x3x4-plane. Write

A = a+ φ1dx
3 + φ2dx

4

1Up to my possibly having messed up the positive constant that multiplies k.
2In Manolescu’s general lecture, these were termed “BPS states”, and he claimed that they minimise the energy. Now you

see why!
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where a defines a connection ∇a in 2d, and φi : R2 → g. The curvature becomes

FA = Fa +∇a(φ1dx
3 + φ2dx

4) + [φ1, φ2]dx3 ∧ dx4.

Write a = aidx
i, ∇(i)

a = ∂i + [ai,−]. Then F = ?F becomes the system of equations
Fa = [φ1, φ2]dx1 ∧ dx2,

∇(1)
a φ1 = −∇(2)

a φ2

∇(2)
a φ1 = ∇(1)

a φ2

(1.3)

Problem: (1.3) is not invariant under coordinate transformations.

Solution: Consider g⊗ C, set z = x1 + ix2, and take

Φ =
φ1 − iφ2

2
dz ∈ Ω1,0

R2 (ad(P )C)

Φ∗ =
φ∗1 + iφ∗2

2
dz̄ ∈ Ω0,1

R2 (ad(P )C)

where (−)∗ is the involution on g ⊗ C defining the compact real form. Then the equations (1.3) become
Hitchin’s equations {

Fa + [Φ,Φ∗] = 0,

∂̄aΦ = 0
(1.4)

These make sense on an arbitrary Riemann surface C, and can be partially interpreted as follows: the 2d
connection a defines a holomorphic structure on the bundle ad(P )C, and Φ is a holomorphic section of
ad(P )C ⊗ KC (KC the canonical bundle – holomorphic 1-forms). This motivates the following definition
(terminology due to Simpson [Sim92]).

Definition 1.1. AGC-Higgs bundle is a pair (P,Φ) of a holomorphic principalGC-bundle and Φ ∈ H0(C; ad(P )⊗
KC).

Remark 1.1. Note that in (1.4) the curvature is necessarily tracefree. As such when we start with a 2d
connection we should really take the trace-free part of the curvature, i.e.

F⊥ + [Φ,Φ∗] = 0.

(This will be important for some of our calculations later.)

From now on: Assume that C is compact.

Example 1.1. If Φ ≡ 0 then (1.4) becomes Fa ≡ 0, whose solutions are flat unitary G-connections on C.
By results of Narasimhan and Seshadri [NS65] these are equivalent to stable holomorphic GC-bundles on C
(up to appropriate notions of equivalence – more on this later).

1.2 Stability conditions for Higgs bundles

From now on:

• C is a compact Riemann surface

• G = SU(2) or SO(3)

• The 2d connection will be denoted by capital A
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• Will mostly work with the rank 2 complex vector bundle associated to the principal SU(2)/SO(3)
bundle, denoted V

In Haydys’ Intro to Gauge Theory course in week 1, we saw that the way the gauge theory game is played is
to take (roughly)

• An infinite dimensional space of solutions (or potential solutions), S.

• An infinite dimensional group of symmetries G acting on S – tells us when solutions are equivalent.

• The moduli space of solutions up to equivalence, M = S/G. Hopefully get: finite dimensional, smooth
manifold, perhaps with other nice features (compact/complete metric/symplectic/etc.)

We also saw that in order to find a “nice” moduli space we might have to remove “bad” points from S,
usually because they have “too many symmetries” (i.e. non-minimal stabilizer under the gauge group). To
distinguish the good and bad points in our situation, make the following definition.

Definition 1.2. A rank 2 Higgs bundle (V,Φ) is stable if for all Φ-invariant line subbundles L ⊂ V , deg(L) <
1
2 deg(V ).

Remark 1.2. In the above definition, if deg(L) = 1
2 deg(V ) we call (V,Φ) strictly semistable.

The above definition of stability is justified by the following results:

(1) The definition of stability is “built in” to Hitchin’s equations (1.4) – if (A,Φ) is a solution to Hitchin’s
equations the corresponding Higgs bundle is semistable; if the Higgs bundle is strictly semistable, (A,Φ)
reduces to U(1) [Hit87, Thm.2.1].

(2) In line with our “good points have minimal symmetries” mantra, the only endomorphisms of a stable
pair are given by scalar multiplication [Hit87, Prop.3.15].

(3) Existence theorem: Suppose that C has genus g > 1, let (P,A) → C be a principal SO(3)-bundle
with connection and let V be the associated rank 2 complex vector bundle. Choose Φ ∈ Ω1,0

C (ad(P )C)
satisfying ∂̄AΦ = 0. If (V,Φ) is a stable pair, then there is an automorphism of V of determinant 1,
unique up to SO(3) gauge transformations, which sends (A,Φ) to a solution of Hitchin’s equations [Hit87,
Thm.4.3].

The proofs of (1) and (2) are relatively straightforward. The proof of (3) is more involved, and involves the
moment map for the gauge group action (which we’ll discuss in a minute) and the Uhleckbeck compactness
theorem [Uhl82] (which we won’t discuss).

Example 1.2. The details of the following examples are left as exercises (or you can read [Hit87]):

• There are no stable pairs on P1 – use that vector bundles decompose as sums of line bundles O(n) and
that KP1 ' O(−2).

• There is a unique stable pair on an elliptic curve – need to use Atiyah’s classification of vector bundles
on an elliptic curve [Ati57] and triviality of the canonical bundle.

• For g(C) > 1, choose a square root of the canonical bundle K1/2 and set V = K1/2 ⊕K−1/2. For each
q ∈ H0(K2),

Φ :=

(
0 −q
1 0

)
: K1/2 ⊕K−1/2 → K3/2 ⊕K1/2

defines a stable pair.

Taking into account the above examples, we’ll assume from now on that g(C) > 1.
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1.3 Construction of the moduli space

Following Hitchin, let’s now construct the moduli space of solutions to (1.4). I will ignore the issues that
arise from the fact that various objects are infinite dimensional: in Haydys’ lectures you saw how to deal
with such issues in Seiberg-Witten theory, and they can be similarly resolved for the following construction.

1.3.1 Symplectic quotients and moment maps

Our method of construction will make use of a generalisation of the symplectic quotient.

Recall the definition of a moment map: a group G acting on a symplectic manifold (M,ω) by symplectomor-
phisms yields a map from g symplectic vector fields. Contracting each X ∈ g with the symplectic form this
yields a 1-form, which is closed since

0 = LXω = (dιX + ιXd)ω = d(ιXω).

If the 1-form is also exact, ιXω = dµX , we obtain a function µX : M → R. Dualising this one obtains a
function

µ : M → g∗,

the moment map for the action.3

Example 1.3. Consider M = End(Cn) with Kähler metric g(A,B) = Re Tr(AB∗), acted on by G = U(n).
The Kähler form is

ω(A,B) = g(iX,B) = Re Tr(iAB∗) = −Im Tr(AB∗).

The vector field induced by a matrix X ∈ u(n) is XA = [X,A] ∈ TA End(Cn) = End(Cn), so

ω(XA, B) = −Im Tr([X,A]B∗)

=
i

2
Tr([X,A]B∗ − [X,A∗]B)

=
i

2
Tr([B,A∗]X + [A,B∗]X) = (dµX)A(B)

for µX(A) = i
2 Tr([A,A∗]X). Hence the moment map for the action is

µ(A) =
i

2
[A,A∗]. (1.5)

Given the setup above, one can take the symplectic quotient of M by G,

M �G := µ−1(0)/G;

if G acts freely on µ−1(0), this naturally inherits the structure of a symplectic manifold.

In the situation we’re considering, let M = A× Ω where

• A is the affine space of unitary connections on a fixed bundle P , and

• Ω := Ω1,0
C (ad(P )C).

The tangent space to A× Ω at any point is given by

Ω0,1
C (ad(P )C)⊕ Ω1,0

C (ad(P )C) ' Ω1(ad(P ))⊕ Ω1(ad(P ))

3Beware: moment maps do not always exist!
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(isomorphism as real vector spaces), and using this second description we define a symplectic form on A×Ω
by

ω1((Ȧ1, Φ̇1), (Ȧ2, Φ̇2)) =

∫
C

Tr
(
−Ȧ1 ∧ Ȧ2 + Φ̇1 ∧ Φ̇2

)
.

The group of G-gauge transformations acts on A × Ω by symplectomorphisms – specifically, as a gauge
transformation on the connection 1-form, and the adjoint action on the Higgs field – and there is a moment
map for this action given by

µ1(A,Φ) = FA + [Φ,Φ∗],

the first equation in (1.4). As an exercise you should derive this (the second term should be essentially
Example 1.3).

1.3.2 Hyperkähler quotients

Having encoded one part of Hitchin’s equations (1.4) in a moment map, it is reasonable to ask whether there
is a similarly natural way to also encode the holomorphicity of Φ. The answer is yes, and will lead us to a
construction of the moduli space as a hyperkähler quotient.

Definition 1.3. A hyperkähler metric g on a manifold M is a Riemannian metric which is simultaneously
Kähler for three complex structures, I, J,K, which satisfy the quaternionic relations

I2 = J2 = K2 = −1, IJ = K.

In such a situation we then have three symplectic forms ω1,2,3 and given a G action on M potentially three
moment maps µ1,2,3. The hyperkähler quotient of M by G is then

M ��G :=

(
3⋂
i=1

µ−1
i (0)

)
/G;

as its name suggests, this naturally inherits the structure of a hyperkähler manifold (provided the G-action
is free on the joint zero locus).

In order to describe the moduli space of Higgs bundles as a hyperkähler quotient, we need to find the other
two Kähler forms on A × Ω and describe the corresponding moment maps. The Kähler forms4 arise as the
real and imaginary parts of the holomorphic symplectic form

ω((Ȧ1, Φ̇1), (Ȧ2, Φ̇2)) = 2i

∫
C

Tr(Ȧ1 ∧ Φ̇2 − Ȧ2 ∧ Φ̇1)

where we have used the description of the tangent space as Ω0,1
C (ad(P )C)⊕Ω1,0

C (ad(P )C). The corresponding
moment maps are

(µ2 + iµ3)(A,Φ) = 2i∂̄AΦ,

and so we recover the second part of Hitchin’s equations (1.4). Finally, we obtain the moduli space of Higgs
bundles as the hyperkähler quotient

Higgs := A× Ω ��G.
4The corresponding complex structures are given by

I(Ȧ, Φ̇) = (iȦ, iΦ̇)

J(Ȧ, Φ̇) = (iΦ̇∗,−iȦ∗)

K(Ȧ, Φ̇) = (−Φ̇∗, Ȧ∗)

where we use the description of the tangent space where Ȧ ∈ Ω0,1
C (ad(P )C) and Φ̇ ∈ Ω1,0

C (ad(P )C).
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Remark 1.3. To be entirely transparent, the only space that the above construction applies to without caveats
is

Higgs1
SL2

(C) =


moduli of (V,Φ), V a rank 2

holomorphic bundle with fixed
determinant and degree 1,
Φ ∈ H0(C; End0(V )⊗KC)


/
∼

where End0(V ) are the trace-free endomorphisms of V . The other possibilities do exist, but have the following
issues I have not explored:

• Higgs0
SL2

(C) contains strictly semistable pairs – i.e. connections reducible to U(1) – which are singular
points. Removing these makes the hyperkähler metric incomplete.

• Higgs1
PGL2

(C) has orbifold singularities (despite the fact that it has no strictly semistable points).

• Higgs0
PGL2

(C) is the worst of both worlds.

2 Lecture 2: Geometry and topology of the moduli space

Last lecture we constructed the moduli of Higgs bundles – this lecture we’ll explore some of the geometry
and topology of this space. We really will focus on the rank 2 case in this lecture. Today C will always be a
compact Riemann surface of genus g(C) > 1.

Reminder: Hitchin’s equations are (1.4) {
F⊥ + [Φ,Φ∗] = 0,

∂̄AΦ = 0

2.1 Topology of the moduli space

Following Hitchin [Hit87, §7] we will use the U(1) action on the moduli space to understand the topology of

Higgs1
SL2

(C) =


moduli of (V,Φ), V a rank 2

holomorphic bundle with fixed
determinant and degree 1,
Φ ∈ H0(C; End0(V )⊗KC)


/
∼

There is a U(1)-action by isometries on A × Ω given by “rotating the Higgs field”, i.e. the connection is
unchanged and

Φ→ eiθΦ, Φ∗ → e−iθΦ∗.

This U(1) action preserves Hitchin’s equations (1.4) and commutes with gauge transformations, and so
descends to the moduli space.

It also preserves the symplectic form ω1 (though not ω2/3), so we can look for a moment map for the action.
The vector field generated by the action is

X(A,Φ) =
d

dθ

∣∣∣∣
θ=0

(A, eiθΦ) = (0, iΦ),

and so,

(ιXω1)(A,Φ)(Y ) = g(IX, Y ) = g(−Φ, Y ) = −1

2
dg(Φ,Φ)(Y ), (2.1)
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i.e. the moment map for the U(1) action is − 1
2g(Φ,Φ). So, set

µ(A,Φ) =
i

2

∫
C

Tr(ΦΦ∗). (2.2)

By (2.1) the critical points of µ are precisely the fixed points of the U(1)-action. We will investigate the
topology of Higgs1

SL2
(C) using this Morse function – for this we need to know some of the properties of µ.

Proposition 2.1. The following is [Hit87, Prop.7.1]:

(i) µ is proper.

(ii) µ has critical values 0 and
(
d− 1

2

)
π, d ∈ [1, g − 1] ∩ Z.

(iii) µ−1(0) is a non-degenerate critical manifold of index 0, diffeomorphic to the moduli space of stable rank
2 bundles of odd degree and fixed determinant over C.

(iv) µ−1
((
d− 1

2

)
π
)

is a non-degenerate critical manifold of index 2(g+ 2d− 2), diffeomorphic to a 22g-fold
covering of the symmetric product S2g−2d−1C; the covering is defined by the following pullback square

˜S2g−2d−1C Jac(C) x

S2g−2d−1C Jac(C) 2x

(pi)i=1,...,2g−2d−1 (
∑
i pi)− (2g − 2d− 1)c

where c ∈ C is a choice of basepoint.

Proof. (i) Follows by bounding the curvature and applying Uhlenbeck compactness.

(iii) 0 is an absolute minimum of µ, and this occurs if and only if Φ ≡ 0. Then Hitchin’s equations become
FA = 0, and by Narasimhan and Seshadri [NS65] this gives the moduli space of stable holomorphic rank 2
vector bundles of fixed determinant and odd degree. The index is the rank of the subbundle of the normal
bundle on which U(1) acts by negative weights – since 0 is an absolute minumum, this is 0.

(ii) The fixed points of the U(1) action on A × Ω are precisely the points where Φ ≡ 0, so you might be
tempted to think that we are now done. Remember, however, that Higgs1

SL2
(C) is the quotient of a subspace

of A×Ω by the group of gauge transformations – as such, there are more fixed points corresponding to Higgs
bundles which are gauge equivalent to the other points in their U(1) orbit. Explicitly:

(A,Φ) is a fixed point ⇐⇒ there are gauge transformations g(θ) such that

g(θ)−1Φg(θ) = eiθΦ
g(θ)−1dAg(θ) = dA

}
(dA the covariant derivative associated to A). Since g(θ) is nonconstant and preserved by parallel transport,
dA preserves its eigenspaces, and so A reduces to a U(1)-connection. So, the associated vector bundle V
decomposes into holomorphic line subbundles

V = L⊕ (L∗ ⊗ ∧2V )

the eigenlines of gθ. Since Φ is an eigenvector of the adjoint action, without loss of generality it is strictly
lower triangular,

Φ =

(
0 0
φ 0

)
, φ ∈ Ω0

C(L−2 ⊗KC ⊗ ∧2V ),
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(i.e. φ : L→ L∗ ⊗ ∧2V ⊗KC). Since (A,Φ) is a solution to Hitchin’s equations, φ is holomorphic and

0 = F⊥ + [Φ,Φ∗] =

(
F1 − φφ∗ 0

0 −F1 + φφ∗

)

where F⊥ =

(
F1 0
0 −F1

)
is the trace-free part of the curvature of the reducible connection. The curvature

of the connection on L can be expressed as5

F (L) = F1 +
1

2
F (∧2V ) = φφ∗ +

1

2
F (∧2V ),

and integrating this expression gives

deg(L) =
i

2π

∫
C

F (L)

=
i

2π

∫
C

φφ∗ +
i

2π

∫
C

1

2
F (∧2V )

=
i

2π

∫
C

Tr(ΦΦ∗) +
1

2
deg(∧2V )

=
1

π
µ(A,Φ) +

1

2

since we have fixed deg(∧2V ) = 1. Setting d = deg(L) we have

µ(A,Φ) = π

(
d− 1

2

)
for some integer d. Stability places constraints on the degree of the line bundle L,6 – these give the constraint
d− 1

2 ≤ g − 1.

(iv) Choose a basepoint c ∈ C and consider the degree 1 line bundle O(c). For ease of notation, denote this
by O(1) := O(c) and L(1) := L ⊗ O(c). From part (iii) we see that µ−1

(
π
(
d− 1

2

))
is diffeomorphic to the

moduli space of stable pairs (V,Φ) where

• V = L⊕ L∗(1), L a holomorphic line bundle of degree d

• Φ is determined by φ ∈ H0(C;L−2KC(1)), i.e. a holomorphic bundle map φ : L→ L∗ ⊗KC(1).

deg(L−2KC(1)) = (−2d) + (2g − 2) + 1 = 2g − 2d − 1, so the vanishing locus of φ is a positive divisor of
degree 2g − 2d− 1 – i.e. an element of the symmetric product S2g−2d−1C.

Conversely, if we are given a positive divisor of degree 2g − 2d − 1 we get a holomorphic line bundle U of
degree 2d together with a section φ of U−1KC(1) vanishing on this divisor. To build a Higgs bundle from
this, we need to choose a square root of U – there are 22g possibilities (think about why this is true), and
since destabilising line bundles are unique7 each choice uniquely determines a rank 2 holomorphic bundle V .
φ is only determined up to nonzero scalar multiple, but all such multiples are related by an automorphism
of V , and so are gauge equivalent.

5Since the trace of the curvature is F (∧2V ).
6Note that if it weren’t for the Higgs field, L would be a destabilising subbundle for V .
7Something that we haven’t shown, but is true.
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So we have shown that µ−1
(
π
(
d− 1

2

))
is diffeomorphic to the pullback

˜S2g−2d−1C Jac(C) x

S2g−2d−1C Jac(C) 2x

(pi)i=1,...,2g−2d−1 (
∑
i pi)− (2g − 2d− 1)c

It remains to calculate the value of the index. We’re not going to do this calculation – as for µ−1(0) the first
step is to use the fact that when a Morse function arises as the moment map for a circle action on a Kähler
manifold, the subbundle of the normal bundle on which the Hessian acts with negative eigenvalues is also
the subbundle on which the circle action acts by negative weights.

Having understood various properties of µ, we can prove results about the topology of Higgs1
SL2

(C) using
Morse theory. For instance:

Theorem 2.2 ([Hit87, Thm 7.6.iv]). The Poincaré polynomial of Higgs1
SL2

(C) is

Pt(Higgs1
SL2

(C)) =
(1 + t3)2g

(1− t2)(1− t4)

− t4g−4

4(1− t2)(1− t4)

(
(1 + t2)2(1 + t)2g − (1 + t)4(1− t)2g

)
− (g − 1)t4g−3 (1 + t)2g−2

(1− t)
+ 22g−1t4g−4

(
(1 + t)2g−2 − (1− t)2g−2

)
We’re not going to run through this computation, but you can probably guess the method of proof: the
Morse function µ is perfect, so calculating the Poincaré polynomial for the full moduli space by calculating
the Poincaré polynomials of the critical submanifolds. These are of two types:

• The index zero submanifold, µ−1(0), is the moduli of rank 2 stable bundles of fixed determinant and
on degree – one can consult Atiyah and Bott [AB83] to learn its Poincaré polynomial.

• The other critical manifolds are covering spaces of symmetric products of the curve C.

2.1.1 A very short word on higher rank Higgs bundles

If V is a holomorphic vector bundle of rank > 2, the above analysis can be performed up to a point. In
particular, for a U(1)-fixed (V,Φ), the splitting of V into a sum of line bundles with Φ strictly lower triangular
becomes a decomposition of V into subbundles with respect to which Φ is block subdiagonal, i.e.

Φ =


0 0
φ1 0
0 φ2

. . .


– the terminology to google is “system of Hodge bundles” [Sim92, §4]. It becomes much harder to give a
description of the critical manifolds that you can actually compute with (the analog of the covers of symmetric
powers of the curve); see [Got94] for the rank 3 case.
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2.2 Preview of nonabelian Hodge theory

Recall from Section 1.3.2 that the moduli of Higgs bundles is a hyperkähler manifold. The description we
have given of it so far (i.e. the description as literally the moduli space of Higgs bundles) has been relative
to the complex structure I – let’s now ask whether we can naturally interpret the moduli space in the other
complex structures.

We’ll begin with complex structure J . Recall that with respect to the description Tp(A×Ω) = Ω0,1
C (ad(P )C)⊕

Ω1,0
C (ad(P )C), J is defined by

J(Ȧ, Φ̇) = (iΦ̇∗,−iȦ∗).
Let’s find a more natural expression for this complex structure. Define an isomorphism

A× Ω A×A

(A,Φ) (∂̄A + Φ∗, ∂A + Φ)

α

where dA = ∂A + ∂̄A is the covariant derivative corresponding to the unitary connection A. The derivative
of α is

α∗(Ȧ, Φ̇) = (Ȧ+ Φ̇∗,−Ȧ∗ + Φ̇),

and so
α∗(J(Ȧ, Φ̇)) = α∗(iΦ̇

∗,−iȦ∗) = (iΦ̇∗ + iȦ, iΦ̇− iȦ∗) = iα∗(Ȧ, Φ̇).

So α : (A×Ω, J) ' (A×A, i), the natural complex structure on the latter space. We can interpret elements
of A×A as complex PSL(2,C) connections by taking

(∂̄1, ∂2) 7→ ∂2 + ∂̄1.

Suppose that (A,Φ) solves Hitchin’s equations (1.4), and consider the corresponding PSL(2,C)-connection
DA,Φ := dA + Φ + Φ∗. We compute that

F (DA,Φ) = DA,Φ ◦DA,Φ

= d2
A + dA(Φ)−ΦdA + dA(Φ∗)−Φ∗dA+ΦdA + ΦΦ︸︷︷︸

=0

+ΦΦ∗+Φ∗dA + Φ∗Φ + Φ∗Φ∗︸ ︷︷ ︸
=0

= F (A) + [Φ,Φ∗]︸ ︷︷ ︸
=0 (1.4)

+ ∂̄AΦ + ∂AΦ∗︸ ︷︷ ︸
=0 (1.4)

+ ∂AΦ + ∂̄AΦ∗︸ ︷︷ ︸
=0 (degree reasons)

= 0

so that DA,Φ is a flat PSL(2,C)-connection. Hitchin then performs an analysis to show that in fact the
corresponding quotient is – almost – the moduli space of (irreducible) flat PSL(2,C)-connections on C.

Why almost? This has to do with the fact that in order to achieve a smooth moduli space we had to
study Higgs1

SL2
(C) instead of Higgs1

PGL2
(C). To describe the moduli space Higgs1

SL2
(C) in the J complex

structure, we’ll use the description of the moduli space of flat connections as a character variety:

The fundamental group of C,

π1(C) =

〈
A1, . . . , Ag, B1, . . . , Bg

∣∣∣∣∣
g∏
i=1

[Ai, Bi] = 1

〉
,

has a universal central extension
0→ Z→ Γ→ π1(C)→ 1

generated by the Ai and Bj , together with a central element c and relation
∏g
i=1[Ai, Bi] = c. Representations

of Γ→ SL(2,C) can either send c 7→ 1 – in which case they factor through π1(C) – or c 7→ −1, which is the
situation resulting in a flat PSL(2,C) connection with nontrivial Stiefel-Whitney class w2.

The resulting diffeomorphism is the first hint of the non-abelian Hodge theorem:

Higgs1
SL2

(C) Hom(Γ, SL(2,C))c7→−1,irr/SL(2,C)∼
diffeo.

11



Remark 2.1. For those who are interested: the reference for the non-abelian Hodge theorem is Simpson’s
paper [Sim92].
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