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1. A guide to the references.

• The material on complex geometry, Hodge theory and Kähler geometry can be found in [5].
• A derivation of the Hodge diamond symmetries from mirror symmetry can be found in [4].
• An explanation of the numerology for the quintic threefold can be found in the corresponding lecture

of [1].
• The homotopy version of the Lefschetz hyperplane theorem is due to [2].
• The book [3] is a good general reference, as well as containing a lot of content overlap with the above.

2. Review of differential forms and complex geometry.

2.1. Differential topology. We begin by recalling the definition of de Rham cohomology : on a smooth
n-manifold M we assign the dg-algebra of differential forms on M , (Ω•(M), ddR). These are sections of
the exterior algebra on the bundle T ∗M , with grading given by form degree and differential the de Rham
differential d = ddR. Concretely, recall that in local coordinates (x1, . . . , xn) the de Rham differential is
defined on functions by

df =
∂f

∂xi
dxi,

where we have used the Einstein convention of summing over pairs of raised and lowered indices, and is
extended to higher degree forms via the Leibniz rule. We define the de Rham cohomology of M to be the
cohomology of (Ω•(M), ddR), i.e.

Hk
dR(M) =

ker(d : Ωk → Ωk+1)

im (d : Ωk−1 → Ωk)
.

We will define the Betti numbers of a closed manifold M to be bk = dimHk
dR(M) – this is a nonstandard

definition, but for a closed smooth manifold it is equivalent to the standard definition from algebraic topology.
There is in this case a symmetry on the Betti numbers bk = bn−k, implied by the stronger theorem of Poincaré
duality.

2.2. Complex geometry. We now review some facts and definitions from complex geometry. Let (X, J)
be a complex d-manifold1. Unless required for clarity we will omit the complex structure operator J , and we
will call X a (complex) d-fold for short.

We will write TX and T ∗X for the holomorphic tangent and cotangent bundles of X, obtained by the natural
identification of the tangent bundle with the +i-eigenspace of J in the complexified tangent bundle

TX ⊗ C ∼= T 1,0X︸ ︷︷ ︸
+i

⊕T 0,1X︸ ︷︷ ︸
−i

.

Dualizing this decomposition similarly decomposes the complexified cotangent bundle into (1, 0) and (0, 1)
summands, and we define

(T p,qX)∗ =

p∧
(T 1,0X)∗ ⊗

q∧
(T 0,1X)∗

Date: March 8, 2018.
1The dimension d here is the complex dimension of the manifold.
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the sections of which are the differential (p, q)-forms Ωp,q(X). By composing the de Rham differential with
the projections maps Ω1(X;C)→ Ωp,q(X), p+ q = 1, we obtain a decomposition

ddR = ∂ + ∂̄, ∂ : Ωp,q(X)→ Ωp+1,q(X), ∂̄ : Ωp,q(X)→ Ωp,q+1(X).

By taking cohomology with respect to the ∂̄-operator, we arrive at the Dolbeault cohomology groups

Hp,q(X) =
ker(∂̄ : Ωp,q → Ωp,q+1)

im (∂̄ : Ωp,q−1 → Ωp,q)
,

and we define the Hodge numbers of X to be the dimensions hp,q(X) = dimCH
p,q(X).

Remark The Dolbeault theorem allows us to identify Hp,q(X) with the sheaf cohomology groups Hq(Ωp),
where Ωp is the sheaf of holomorphic p-forms on X.

We may present the Hodge numbers graphically in the Hodge diamond of X; e.g. the Hodge diamond of a
3-fold is

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

↖∂ ∂̄ ↗

(Hodge diamond for a complex 3-fold)

We remark that although it is not displayed in the above diamond, there is a symmetry between Hodge
numbers of the form hp,q = hd−p,d−q. This symmetry can in particular be derived via the theorem of Serre
duality.

3. Kähler geometry.

3.1. Definition and examples. Recall that a symplectic form on a manifold M is a closed and non-
degenerate 2-form ω ∈ Ω2(M).

Definition 1. A Kähler manifold is the data of a complex manifold equipped with a symplectic form,
(X, J, ω), satisfying the condition that the symmetric 2-tensor g defined by g(V,W ) = ω(V, JW ) is a Rie-
mannian metric for which J is orthogonal.

Remark A Riemannian metric g for which J is orthogonal is called a Hermitian metric. We note in passing
that it would have been equivalent to require the Hermitian metric g be data and dω = 0 be a condition.

Observe that the above also implies that (J∗ω)(V,W ) = ω(JV, JW ) = ω(V,W ), i.e. that ω is a (1, 1)-form.

Example 1. Consider the projective space CPn = (Cn+1 − {0})/C×, and let s : CPn → Cn+1 − {0} be a
local section of the projection map (i.e. a set of local coordinates). Define a 2-form locally by

ωFS = −i∂̄∂ log |s|.

It is an exercise to show that this is independent of the choice of section, and that the global 2-form obtained
is a Kähler form. The form ωFS is called the Fubini-Study form.

The example of projective space now provides us with a wealth of further examples of Kähler manifolds via
the following proposition.

Proposition 3.1. Any complex submanifold of a Kähler manifold is naturally Kähler.
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Proof. This follows immediately from the fact that the restriction of a Riemannian metric to a submanifold is
a Riemannian metric, and the invariance of the tangent bundle of a complex submanifold under the complex
structure operator. �

3.2. Hodge theory. On a closed Riemannian manifold (M, g) there is a deep relationship between the de
Rham cohomology of M and solutions to the Laplace equation–harmonic forms–which goes by the name of
Hodge theory. Specifically, letting Hk(M) denote the space of harmonic k-forms, Hodge theory provides an
isomorphism

Hk(M) ∼= Hk
dR(M).

On closed complex manifolds, a Kähler structure allows us to refine this to a statement about Dolbeault
cohomology and its relation to de Rham cohomology, leading to the following extra relations between Hodge
and Betti numbers:

hp,q = hq,p, bk =
∑
p+q=k

hp,q.

Introducing these symmetries and the symmetry obtained from Serre duality, we can refine the Hodge diamond
for a Kähler 3-fold to the following (we include the Betti numbers also):

h0,0 b0 = h0,0

h1,0 h1,0 b1 = 2h1,0

h2,0 h1,1 h2,0 b2 = 2h2,0 + h1,1

h3,0 h2,1 h2,1 h3,0 b3 = 2h3,0 + 2h2,1

h2,0 h1,1 h2,0 b2 = 2h2,0 + h1,1

h1,0 h1,0 b1 = 2h1,0

h0,0 b0 = h0,0

(Hodge diamond for a Kähler 3-fold)

4. Mirror symmetry and Calabi-Yau manifolds.

4.1. Statement of mirror symmetry. The version of mirror symmetry that we will discuss has the fol-
lowing, rough principal at its core:

Two manifolds X and X∨ are mirror dual if there is a correspondence between the parameters deforming the
Kähler structures of one manifold and the parameters deforming the complex structures of the other manifold.

Note that in the above formulation there are many structures that X and X∨ must have that we have
failed to make explicit.

4.2. Calabi-Yau manifolds. We will partially remedy the omission of any necessary structures on X and
X∨ now.

Definition 2. The canonical bundle of a complex d-fold X is KX :=
∧d

T ∗X, the bundle of holomorphic
d-forms on X.

Definition 3. A compact Kähler manifold X is called Calabi-Yau if it has trivial canonical bundle.

From here on out we will assume that all manifolds are connected and simply connected Calabi-Yau.

Remark The simple connectedness assumption implies that the Calabi-Yau condition is equivalent to the
vanishing of the first Chern class c1(X), as there are then no topologically trivial but holomorphically
nontrivial line bundles.

Our assumptions allow us to further reduce the number of parameters in the Hodge diamond for a 3-fold as
follows:

(1) Triviality of the canonical bundle implies that h3,0 = 1 (in words: up to scaling there is a unique
holomorphic top form).
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(2) Connectedness implies b0 = 1.
(3) Simply connected implies b1 = 0, hence h0,1 = 0.
(4) Serre duality together with triviality of the canonical bundle implies that h0,2 = h0,1 = 0.

This leaves two parameters remaining in the Hodge diamond:

1 1
0 0 0

0 h1,1 0 h1,1

1 h2,1 h2,1 1 2(h2,1 + 1)
0 h1,1 0 h1,1

0 0 0
1 1

(Hodge diamond for a connected,
simply connected Calabi-Yau 3-fold)

4.3. Mirror symmetry for simply connected Calabi-Yau 3-folds. We may interpret the parameters
h1,1 and h2,1 as follows.

First, recall that a Kähler form ω on X is a closed (1,1)-form. The converse is clearly not true for two
reasons: an arbitrary (1,1)-form need not come from a real 2-form, and even if it does it may not satisfy the
required positivity condition. Under certain assumptions however–including our case of a simply-connected
Calabi-Yau 3-fold–the space of admissible Kähler forms is an open cone inside of H2

dR(X), and so the space of
(1,1)-forms whose real part is Kähler is open inside of H1,1(X). We therefore say that the number of Kähler
parameters is given by h1,1(X).

Second, recall that infinitesimal deformations of the complex structure of a manifold X are parametrized by
H1(TX). Triviality of KX implies triviality of its dual

∧3
TX, and so the wedge pairing

∧ : TX ⊗
2∧
TX →

3∧
TX

induces an identification TX ∼=
∧2

T ∗X. Hence H1(TX) = H1(
∧2

T ∗X) = H2,1(X), and so h2,1(X) is the
number of complex structure parameters for X.

The rough principal given above now leads us to make the following prediction:

If two simply connected Calabi-Yau 3-folds X and X∨ are mirror dual, then

h1,1(X) = h2,1(X∨) and h1,1(X∨) = h2,1(X).

Remark This prediction may be refined to hp,q(X) = hd−p,q(X∨) on higher dimensional Calabi-Yau mani-
folds with H2(O) = 0.

5. Canonical Example: The quintic threefold.

Consider the zero set Q ⊂ CP4 of a degree 5 polynomial p, i.e. p is a section of O(5). Since Q is cut out of
CP4 by a single equation, it is a 3-fold. Assuming Q is nonsingular, it inherits a Kähler structure from the
Fubini-Study metric for CP4.

Q is simply connected by the Lefschetz hyperplane theorem (π1(Q)
∼→ π1(CP4) = 0) and by the adjunction

formula

c(Q) =
(1 + c1(H))5

1 + 5c1(H)
= 1 +O(c1(H)2)

where H is the hyperplane bundle on CP4, we see that c1(Q) = 0. Hence Q is a Calabi-Yau 3-fold.
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There are 126 degree 5 monomials in 5 variables, hence the dimension of the spaceH0(O(5)|Q) of homogeneous
degree 5 polynomials not vanishing on Q is 125 (one simply excludes p). Counting (infinitesimal) deformations
of CP4 gives

dimH0(TCP4) = dim(PGL5C) = dim(GL5C)− dim(C×) = 52 − 1 = 24.

Recalling that we have TQ ∼=
∧2

T ∗Q (since Q is Calabi-Yau),

H0(TQ) = H0(Ω2
Q) = H2,0(Q) = 0

by calculations we have already performed for the Hodge diamond of a simply-connected threefold. Taking
the long exact sequence associated to the Euler sequence

0→ OCP4 → OCP4(1)⊕(5) → TCP4 → 0

gives us H1(TCP4) = 0; hence the long exact sequence associated to the adjunction short exact sequence

0→ TQ→ TCP4 → O(5)|Q → 0

yields

H1(TQ) = H0(O(5)|Q)/H0(TCP4).

Via dimension counting we see that dimH1(TQ) = 125 − 24 = 101. Hence, h2,1(Q) = 101. We also have
that h1,1 = 1 (this is another consequence of the Lefschetz hyperplane theorem: H2(Q) = H2(CP4) = Z),
and so the Hodge diamond for the quintic 3-fold is

1
0 0

0 1 0
1 101 101 1

0 1 0
0 0

1

(Hodge diamond for the
quintic 3-fold)

We want to construct a mirror to the quintic. We consider the family of quintics

Qψ = {[X0 : · · · : X4] ∈ CP4 | fψ = X5
0 + · · ·+X5

4 − 5ψX0X1X2X3X4 = 0}.

Calculating the derivative of fψ, one shows that Qψ is smooth provided ψ is not a fifth root of unity.

Let G = {(a0, . . . , a4) ∈ (Z/5Z)5 |
∑
ai = 0}/〈(a, a, a, a, a)〉 ∼= (Z/5Z)3. G acts on Qψ via

(a0, a1, a2, a3, a4) · [X0 : X1 : X2 : X3 : X4] = [X0ξ
a0 : X1ξ

a1 : X2ξ
a2 : X3ξ

a3 : X4ξ
a4 ]

where ξ = e
2πi
5 . This action is not free, and the points with nontrivial stabiliser–where at least two of the

homogeneous coordinates vanish–produce singularities in Qψ/G. We may find a construct a “good” (in this
case meaning crepant) resolution of the singularities of this quotient using techniques from toric geometry
to obtain a nonsingular space Q∨ψ – as a part of this process, the singularities are replaced by new algebraic

cycles which introduce 100 new h1,1 parameters. Together with the original hyperplane class, we find that
h1,1(Q∨ψ) = 101.

Furthermore, we see that we have at least a one parameter family of deformations in complex structure given
by the coordinate ψ5. It is possible to show that this is the only family of deformations, hence h2,1(Q∨ψ) = 1,

and so the Hodge diamond for Q∨ψ is

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

(Hodge diamond for Q∨ψ)

which is as predicted for the mirror to the quintic.
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