APM 346 — Final Exam Practice Problems.

Richard Derryberry

April 8, 2019

(Problems are mostly taken from or variants of problems from or [Str08].)

1 Introductory explicitly solvable problems

Problem 1. Solve the equation S, + gy = 0.
Problem 2. Solve the equation s, — 4u, = e*T°Y,
Problem 3. Solve the equation gz, = u,u,.

Problem 4. Solve the system of equations

Ugy = 0,
Uyz = 0,
Uyy = 1.

Solution. Integrate uzy = 0 to obtain uy = f(y,z). The second equation gives 0 = f,, so in fact u, = f(y).
Hence u(z,y,2) = F(y) + G(z, z). Now,
1=y = Gys.

So Gp(x,2) = z+ h(x), and G(x,z) = xz+ H(x) + A(z). Putting it all together (and renaming the arbitrary
functions in the solution) we have

u(z,y,2) = xz+ f(x) + g(y) + h(2).

2 Method of characteristics

Problem 5. Solve the problem

2uy + 3u, = 0,
u(z,0) = sin(x),

and sketch the characteristic curves.

Problem 6. Solve the problem
Uy + Uy +u = et

u(z,0) =0,

and sketch the characteristic curves.
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Solution. First, let’s convert this into a homogeneous linear problem. Let p(x,y) = Ae®*2Y, so that
Pz =D,

Py = 2p,

Then p is a particular solution to our equation if A = 4—11. Now, let’s find the general solution to the homoge-
neous problem

Vg + Vy = —0.

The characteristic curves are given by
x—y=C

for C constant (I believe y’all can sketch these particular characteristic curves). These can be parametrised
by v(s) = (z(s),y(s)) = (s + C, 8), and the corresponding ODE to solve along the characteristic curves is

dv s
5= = v(y(s)) = Ae

where A is constant along v(s). Le. the general solution to the homogeneous problem is v(x,y) = ¢p(x —y)e Y
for an arbitrary function ¢.

So the general solution to the inhomogeneous problem is
1
U(.’E,y) = (,25(517 - y)e_y + Ze$+2y’
and applying the BC at y = 0 gives
0=¢(x)+ —€”

so that ¢(z) = —fe”. Putting this together gives

Uogyoy 1 oy oy €"
u(z,y) = 1€ v — 1€ Ye™¥ = — sinh(2y).
Problem 7. Find the general solution to the equation
(14 t*)uy +u, =0,
and sketch the characteristic curves.

Problem 8. Solve the problem

and sketch the characteristic curves.
Problem 9. Solve the problem

U + tzuv,, =0,
u(z,0) = e”,

and sketch the characteristic curves.
Problem 10. Find the general solution to the equation
TUy + Yyu, = 0,

and sketch the characteristic curves.
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Problem 11. Solve the problem

V1—a2%uy +uy, =0,

u(0,y) = v,
and sketch the characteristic curves.
Problem 12. Solve the problem

Ut + XUy = X,
u(x,0) = —x,

and sketch the characteristic curves.

3 The wave equation

Problem 13. Solve the IVP

Ut — Uge = 07

1, =<0,
u=0=1 ¢ >0
0
1

, <0,
Ut|t:0 =

, x>0.
Solution. Let’s assume t > 0 (if not we just have to care about a couple of extra regions). We can apply

D’Alembert’s formula
_ 1 x+t
u(z,t) = gz +t) —;—g(x ) + 5/ h(s)ds

where g(z) = u(x,0) and h(z) = u(z,0). Then the solution is piecewise defined over three regions:

o x < —t: Le. x4+t <0. In this region the h(s) integral does not contribute, and we have

141

0=1.
B +

u(z,t) =
o |z| <t: Then g(x —t) =0 and g(x +1t) = 1, so we have

T Y 1 1
u(x,t):§—|—f/ ds=§—|—7(m+t).
0

e x> t: Then g(x £¢) =0 and the solution is

ot x —(x —
u(m,t):%/_t ds:w:t.

Problem 14. Solve the IVP

Upp — gy = 0,
p — T
uli=p = €%,

Ut|t=o = sin(x).
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Problem 15. Solve the IVP

U — Ugy = T,
u(z,0) =0,
u(x,0) = 0.

Problem 16. Solve the IBVP (x,t > 0)

Ugt — Ugz = 0,
u(z,0) = sin(x),
ug(x,0) =0,
u,(0,t) = 0.

Problem 17. Determine u|(y +)=(50.1,12) when u is a solution to the problem
Ut — 77—2/[17:00 - 0«,
e” 7, x<3,
Uiy = ; S
0, x> 3,
ut\t:[) =0.

Problem 18. Suppose that u(x,y, z,t) solves the wave equation uy = c>Au on the bounded domain Q, with
homogeneous Dirichlet boundary conditions on 9S). Prove that the energy of u

Eq(t /// u? 4 2| Vul?) dz dy dz
1s conserved.

Problem 19. Suppose that u(z,y, z,t) solves the wave equation uy = c>Au on the bounded domain Q, with
homogeneous Neumann boundary conditions on 0S). Prove that the energy of u

= %/// (u? + 2 |Vul?) dz dy dz
Q

u

Solution. Homogeneous Neumann BCs means that the normal derivative % along the boundary 02 vanishes
identically. So we calculate:

dEQ = /// Qg + 22V, - Vu dBr=c /// (uyAu + YV, - Vu) d®
=2 /// V- (wVu) d*% = // wVu - vdvolyg = ¢? // ut— dvolsn = 0.
Q a0 o OV

Problem 20. Suppose that u(x,y, z,t) solves the wave equation uy = c*Au on the bounded domain Q, with
boundary conditions % = % on 0 (where v is the outward pointing normal vector field on 02). Is the

enerqy of u
Eq(t) := /// ui + 2| Vul?) dz dy dz

increasing, decreasing, or constant?

s conserved.

Problem 21. Where does a solution u(x,y,z,t) to the homogeneous wave equation have to vanish if its
initial data vanishes outside of the unit ball {% € R3|||z| < 1}7
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4 The heat equation

Problem 22. Solve the heat equation IVP

Up — Uy = 0, —oo < x,t < 00,

1, |z <1,

Express your answer in terms of the error function

2 T .
Erf(z) = / e dz.
0

Problem 23. Solve the heat equation IVP

4up — Uy, = 0, —o0 < x,t < 00,
u(z,0) =e ",
Problem 24. Suppose that u is a solution to the 1d heat equation on (0,1), satisfying the boundary conditions
uz(0,¢) — u(0,t) = 0,
uz(1,¢) = 0.

1
/()

is nonincreasing, and that it decreases unless u(x,t) is identically zero.

Show that the function

Problem 25. Suppose that u is a solution to the 1d heat equation u; = ugz, on {0 < x < 1,0 <t < oo},
with homogeneous Dirichlet boundary conditions and initial condition

u(z,0) = 4z(1 — z).
Prove that 0 < u(x,t) <1 for allt >0 and all 0 < z < 1.

Solution. The (strong) mazimum/minimum principles tell us that the maz/min of the solution w must occur
either at the endpoints x = 0,1 or at time t = 0, and moreover that if the max/min occurs anywhere in the
interior 0 < x < 1, t > 0, then the function must be constant. The non-constant IC tells us that our solution
18 not constant — hence it suffices to show that at the endpoints at at time zero, the function takes minimum
0 and maximum 1.

The endpoints are held constant at u(0,t) = u(1,t) = 0, and the function g(z) = u(z,0) = 42(1 — z) is > 0,
so minu = 0. Further,
1

Jdx)=4-8x=0 = r=3
so that x =
9(1/2) =2(1
Problem 26. Suppose that u is a solution to the 1d heat equation u; = ugz, on {0 < x < 1,0 <t < oo},

with homogeneous Dirichlet boundary conditions and initial condition

u(x,0) =1 — 22

the only interior critical point; since g" = —8 < 0 this critical point is a mazimum, and

1
5 18
2_1)_1

5 .

(a) Prove that u(x,t) is strictly positive for all t >0 and 0 < x < 1.

(b) Prove that
w(t) == Jmax u(z,t)

<z<

is a decreasing function of t.
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5 Fourier series

z

Problem 27. Determine the real Fourier series representation of sin ( ) on the interval (—m, 7).

2

Problem 28. Determine the real Fourier series representation of sinh (x) on the interval (—m, 7).
Problem 29. Determine the complex Fourier series representation of e®* on the interval (—m,m), for a € C.
Which values of a are “exceptional”?

Solution. The Fourier coefficients are given by

1 i .
Cn = oo » e e dx
1 i .
_ (a—in)z d
o | e i

(_1)n 0T _ pmaT
27 (o — zn)( )

provided o # in for any n € Z (the “exceptional” values). So
—1)n B )

Z m(o —in

neZ
Problem 30. Determine the real Fourier series representation of |x| on the interval (—1,1).
Problem 31. Determine the sine Fourier series representation of x(m — x) on the interval (0, 7).
Problem 32. Determine the sine Fourier series representation of £ on the interval (0,1).
Problem 33. Determine the sine Fourier series representation of 1 on the interval (0,7).
Problem 34. Determine the cosine Fourier series representation of 1 on the interval (0, ).
Problem 35. Determine the cosine Fourier series representation of x on the interval (0,1).

Problem 36. Determine the cosine Fourier series representation of 2 on the interval (0,1).

6 Separation of variables

Problem 37. Using the method of separation of variables, solve the following problem:

Upt — Uge = 0, <z,
u(—m,t) =0,
u(m,t) =0,
u(z, 0) = sinh(z),
ug(z,0) =0

Solution. Looking for a separated solution u(x,t) = X (x)T'(t) gives the system of equations
X"+2X =0

T"+ AT =0
X(—m)=X(m)=0
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We have homogeneous Dirichlet BCs on both ends, so there are mo solutions for A < 0 or A = 0. For
A=w?>0,w>0, we find
X (z) = Acos(wz) + Bsin(wz),
X (m) = Acos(wr) + Bsin(wr) =

0,
X(—7) = Acos(wr) — Bsin(wm) =0
The ICs are odd, so we may take A =0 and look for solutions to
sin(wm) = 0.
These are given by w =n € Z~g, i.e. n=1,2,3,.... Using these eigenvalues, we obtain the solutions

= A, cos(nt) + By, sin(nt)

So the general solution looks like
Z (A, cos(nt) + B, sin(nt)) sin(nzx).
n=1

ut(x,0) = 0 implies that all of the B, =0, so

t) = Ay, cos(nt)sin(nz).

n=1

The other IC gives
u(z,0) = sinh(z Z A, sin(nz)

so we need to calculate the Fourier series for sinh(z) on (—71',7r). We could find this using our solution to
Problem [29, but instead let’s calculate the Fourier coefficients directly:

1 [ 1 [ ;
A, =— / sinh(z) sin(nax) de = Im ( / sinh(z)e'™* da:)
7

—r T J =

1 g : .
=1Im (27r /_W(e“”e””” —e %) da:)
= iIm /Tr et gy /Tr e~ (=im)z gy
27 -7 -7

1 (eﬂ'elnﬂ' e Te inm e~ Teinm eﬂ'e—znﬂ')

= -—im — — — + — = .
27 1+ 14+ 1—1in 1—1mn
_ 2sinh(m) (1)t 2n
T n®+1
So -
2 n
,t) = —sinh —1)ntt t) si .
u(z,t) —sin (m) ; S 1( )"t cos(nt) sin(na)
Problem 38. Using the method of separation of variables, solve the following problem:
Ut — SUpy = 0, O<z<m,

<
12(0,1

t)
)
(1 0)
,0)



APM 346 Final Exam Practice Problems 8

Problem 39. Using the method of separation of variables, solve the following problem:

Up — TUgy = 0, O<z<l,
u(0,t) =0,
uz(1,t) =0,
u(z,0) = 1.

Problem 40. Using the method of separation of variables, solve the following problem:

U — Uge = 10u, -l<z<l,
ug(—1,t) =0,

ug(1,t) =0,

u(z,0) = |z|.

Problem 41. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

Au =0, 0<r<2, —n<0<m,
u(2,0) = n° — 62,
Here (r,0) are the standard polar coordinates on R?:
x = rcos(d)

y = rsin(0)

Problem 42. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

Au =0, l<r<2, —n<6<m,
u(1,0) = sin(20),
u(2,0) = |0).

Here (r,0) are the standard polar coordinates on R?:
x = rcos(f)
y = rsin(0)
Solution. In polar coordinates, the Laplace equation is

1 1
Uppr + —Up + —Uoe = 0,
r T

and separating variables u(r,0) = R(r)©(0) gives the system of equations
0" +X0 =0
r’R"+rR —AR=0
with 2m-periodic BCs for ©. The eigenvalues and © eigenfunctions are
Ao =0, O =0,
Ay = n?, 0,, = C,, cos(nb) + D,, sin(nh).
Solving the Euler type equation for R gives

Ro(?") = A() + BO log(r),
R,(r)=Ar" + Byr ",
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and so
1 oo
u(r,0) = §(A0 + By log(r)) + Z(Anr” + Bnr~")(Cy, cos(n) + D, sin(nh)).
n=1
Atr=1,
1 (oo}
sin(20) = §A0 + Z(A” + B,)(C,, cos(nf) + D, sin(nd)),
n=1
from which we obtain the equations
Ay :OZCQ, (A2+BQ)D2 =1,
(An + Bp)Cy, =0, n # 2,
(An + Bn)Dn = 07 n 75 2.
At r =2 we have
log(2) o (on n .
u(2,6) = 6] = =By + > (2" Ap 427" By)(Cy cos(nb) + Dy sin(nf)).
n=1

Comparing this with the Fourier expansion of |0] on (—m, )

o0

T 4 1
0l=—-—— —_— 2n —1)0
| | 2 71_7;(2”/_1>2 COS(( n ) )
we obtain the equations
log(2) p _ 7
2 2
(2"A, +27"B,)D,, =0, for all n,
(2"A, +27"B,)C, =0, for even n,
4
(2"A, +27"B,)C, = - for odd n.
™

Let’s take these two systems of equations and use them to simplify the series expression before we calculate
the final answer. We have:

m B,

BO = 10g(2)7 4A2 + T - Oa

Dy = ! =— ! D,, =0 forn#2
Ao + By 154, ’ " ’

C, =0 for n even, B, = —A, forn odd.

Rewriting the series solution for w using this information, reindering to sum over only odd integers, and
collecting together various constants, we have

1 2 1 -2 oo
u(r,0) = ggigi o 1567" sin(20) + 3 Az (P21 — 72 ) cos((2n - 1)0).

n=1

Comparing this again at r = 2 with the Fourier series for |0] gives

4
2271,71 _ 272Tl+1 A el = — .
( JAz2n—1 w(2n —1)2
So the solution to the problem is
mlog(r) r?—16r=2 | 4 Kol T2t eos((2n — 1)6)
o)== - 20) — = :
ur0) = 5 10e2) 5@ - 2 g (2n—1)2

n=1
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Problem 43. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

Au =0, 1<r,—7m<0<m,
u(1,0) = 0*.

Here (r,0) are the standard polar coordinates on R?:

x = rcos(d)
y = rsin(0)

Problem 44. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

Au = 0, l<r<2, —nm<0<m,
u(1,0) =1+ 62,
ur(2,0) = 0.

Here (r,0) are the standard polar coordinates on R?:

x = rcos(d)

y = rsin(0)

Problem 45. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

Au =0, 0<r<3,0<0<m,
u(3,0) = ¢,
u(r,0) = u(r,m) =0

Here (r,0) are the standard polar coordinates on R?:

x = rcos(d)

y = rsin(0)

Problem 46. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

Au =0, 0<r<2,0<60<2,
u(2,0) =0,
u(r,0) = ug (r, g) = 0.
Here (r,0) are the standard polar coordinates on R?:

x = rcos(d)

y = rsin(0)
Problem 47. Consider the 2d Helmholtz equation
(A +w?)u =0,

where w s a constant. Separate variables in cartesian coordinates u(xz,y) = X ()Y (y), and write down the
ODFEs that X andY must satisfy.
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Problem 48. Consider the 2d Helmholtz equation
(A +whu =0,

where w is a constant. Separate variables in polar coordinates u(r,0) = R(r)O(0), and write down the ODEs
that R and © must satisfy.

Problem 49. Consider the 3d Helmholtz equation
(A +w?)u=0,

where w is a constant. Separate variables in cartesian coordinates u(x,y,z) = X(z)Y (y)Z(z), and write
down the ODFEs that X, Y and Z must satisfy.

Problem 50. Consider the 3d Helmholtz equation
(A +w?)u =0,

where w is a constant. Separate variables in spherical coordinates u(p, 0, ») = R(p)O(0)P(¢), and write down
the ODEs that R, © and ® must satisfy.

7 Fourier transforms
Problem 51. Calculate the Fourier transform of

r@={ o blse

|z| > 5.

Solution.

R S . _e‘5ik—e5ik_\/58in(5k)
f<k)_ﬁ/_5e = (—ik)ver Vo kO

Problem 52. Calculate the Fourier transform of

ro={ 5 sy

|z| > 5.

Solution. This function is x times the function of x in Problem so using properties of the Fourier

transform,
o d 2sin(5k) | \/5 5k cos(5k) — sin(5k)
f(k)_zdk< Tk )‘l - = '

2
x

Problem 53. Calculate the Fourier transform of e 4

Problem 54. Calculate the Fourier transform of e=31*1,

Problem 55. Calculate the Fourier transform of z2e~ 1%l
—42°

Problem 56. Calculate the Fourier transform of x'e

Problem 57. Calculate the Fourier transform of

f(z) = { (1)7* lz|, |z <1,

|z| > 1.
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Problem 58. Use the Fourier transform to solve the heat equation with convection problem
Ut = Rlgy + YUy, -0 << oo,
u(z,0) = ¢(x),

max |u| < oo,
where k > 0.
Problem 59. Use the Fourier transform to solve

Au =0, —00 < x < +00, y > 0,
u(x,0) = zte ",

max |u| < oo.
Problem 60. Use the Fourier transform to solve

Au =0, —o<r <400, 0<y <1,

u(x,0) = { (T) }I‘ -
1, |z| <
u(z, 1) = { 0; u >

Problem 61. Use the Fourier transform to solve the 2d heat equation

ot Ot

(G2 NG

duy = Au, —0 < z,y < +oo,t >0,
y2
u(,,0) ={ ;;|;g

Solution. Take the Fourier transform in both x and y, (z,y) — (kg, ky) = k, to transform the PDE into
the differential equation
. |1%]”

Uy = ———1.

4

This has solution E
NV Aoy NEl
a(k,t) = g(k)e =,
where § is the Fourier transform of the initial condition g(x,y) = u(zx,y,0).

There are two possible ways you could be asked to “solve” the problem from this point:

(i) Write the final answer in terms of a convolution (I'll leave this method up to you,).

(ii) Calculate g and write the answer as an inverse Fourier transform. For this:

iF) = 5= [ [ 9@ " dwdy

- /00 e*%e*ikyyd L /5 e~
V21 J Y Vam )5

\/Esin(mcm) K
= —_——e 2,
T kg

2 sin(5k k2 -
kg, ky, t) = \/;smgg—iv)e_;e_lizut’

So,




APM 346 Final Exam Practice Problems 13

and

1 sin(bky) _ ki _ R
U(Z’,y,t) = \/m// ke e 2e Tle dk d]i}y

8 Harmonic functions

Problem 62. Find all the harmonic functions on Rf,_y which depend only on the radial coordinate r =
2+ 2.

Problem 63. Suppose that u is a harmonic function on the open unit disc {x?+y? < 1} which is continuous
. . ‘ 2 ;
on the closed unit disc {x* +y* < 1} and has boundary value

Ulg2py2=1 = 162, —r <0<

(a) Determine the maximum value that u takes on the closed unit disc.
(b) Determine u(0).

. . . . . . 9 9 . . .
Problem 64. Suppose that u is a harmonic function on the open unit disc {z*+y* < 1} which is continuous
on the closed unit disc {x* +y* < 1} and has boundary value

U|p2qy2mq = 0% — 0, —r<0<m.

(a) Determine the mazimum value that w takes on the closed unit disc.

(b) Determine u(0).

Problem 65. Suppose that u is a harmonic function on the open unit disc {x®+y* < 1} which is continuous
on the closed unit disc {x* + y? < 1} and has boundary value

U|g24y2—1 = |0] +sin(0), - <0<

(a) Determine the minimum value that u takes on the closed unit disc.
(b) Determine u(0).
Solution. Write g(0) := |6] + sin(6).

(a) By the minimum principle, the minimum of u on the closed disc is the minimum of u on the boundary
circle. So we need to find the minimum of g(6), —m < 0 < w. g is differentiable away from 6 =0, and

g’(@):{ 1+ cos(6), 0<6<m,

—1+cos(f), —m<6<O.

Since |cos(8)] < 1 on these domains, g'(8) # O for any of these values. So to find the minimum, it
reamins to check the endpoints 6 = 0,7:

So minu = 0.

(b) By the mean value formula,

1 i 1 [7 1 g 1 2
u(O):%/ (|9|+sin(9))d9:;/0 9d9+2—/ sin(#)dg = -7 =

. s

0o

—_———
=0 (odd function)
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Problem 66. Suppose that u is a harmonic function on the open unit disc {x*+y? < 1} which is continuous
on the closed unit disc {x* +y? < 1} and has boundary value

0
sin<>‘ —r <6<
2

(a) Determine the maximum value that u takes on the closed unit disc.

Ul g2 4y2=1 —

(b) Determine u(0).

Problem 67. Suppose that u is a harmonic function on the open disc {x? +y? < 4} which is continuous on
the closed disc {x? + y? < 4} and has boundary value

3
u‘:l:z+yz:/1 - 51!/ + 1.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

9 Calculus of variations

Problem 68. Find the curve y = u(x) that makes the integral

/l [((]u ) 2
— + zu
0 dx

stationary, subject to the constraints w(0) =0, u(1) = 1.

dx

Problem 69. Find the Euler-Lagrange equation for the action

1 1
Slu] = // <§uxut +ud — 5u2m> dx dt.

Solution. Explicitly expanding S[u + du] in powers of du gives
1 1 9 9
Slu+ du] — S[u] = iumdut + Eutéum + 3ui Uy — UprOgy | dadt + O(6u”),
so that
1 1 )
0S8 = Euméut + iutéuz + 3uy0Uy — UpgOUsy | drdt
—// —lu 5u—1u (5u—33 (u2) 6u — Ugguzbu | dzdt + (bdy terms)
- 2 xt 2 xt (91? T TTTL Y

= // (=gt — UL Uzy — Ugzas) Ouda dt + (bdy terms).

Setting §S = 0 we find the FEuler-Lagrange equation

Ugt + OUL Uy + Upzze = 0.
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Problem 70. Find the Fuler-Lagrange equation for the functional

a 1 2\ 2
Ty = / 1+ W) dx.
Jo \ 29y

Problem 71. Find the Euler-Lagrange equations and boundary conditions for the functional

1 .l .
1, »  x z .
Slu| = / / (Vu|2 4 2u> dz dy + / (fuz fu) dvol.
Jo Jo \2 1+y Ja(o,1x[0,1]) N2

Problem 72. Find the Euler-Lagrange equation for the functional
2 2y /1 + (G ’
Slu] = / Adw.
J—2 2

Problem 73. Let Q C R? be an open domain with smooth boundary. The area of a surface in R® defined as

the graph of a function z : Q — R is
Alz] ://Q\/l—ﬁ—z%—ﬁ—z:jd:z:dy.

Find the Euler-Lagrange equation for the functional A.

References

[IvrXX] Victor Ivrii. Partial Differential Equations. online textbook for APM346, 20XX.

[Str08] Walter A. Strauss. Partial differential equations. John Wiley & Sons, Ltd., Chichester, second
edition, 2008. An introduction.



	Introductory explicitly solvable problems
	Method of characteristics
	The wave equation
	The heat equation
	Fourier series
	Separation of variables
	Fourier transforms
	Harmonic functions
	Calculus of variations

