APM 346 – Final Exam Practice Problems.

Richard Derryberry

April 5, 2019

(Problems are mostly taken from or variants of problems from [IvrXX] or [Str08].)

1 Introductory explicitly solvable problems

Problem 1. Solve the equation $5u_y + u_{xy} = 0$.

Problem 2. Solve the equation $u_{xy} - 4u_x = e^{x+5y}$.

Problem 3. Solve the equation $u_{xy} = u_x u_y$.

Problem 4. Solve the system of equations

$$u_{xy} = 0,$$

$$u_{yz} = 0,$$

$$u_{zx} = 1.$$

2 Method of characteristics

Problem 5. Solve the problem

$$2u_t + 3u_x = 0,$$

$$u(x,0) = \sin(x),$$

 $and \ sketch \ the \ characteristic \ curves.$

Problem 6. Solve the problem

$$u_x + u_y + u = e^{x+2y},$$
$$u(x,0) = 0,$$

and sketch the characteristic curves.

Problem 7. Find the general solution to the equation

$$(1+t^2)u_t + u_x = 0,$$

and sketch the characteristic curves.

Problem 8. Solve the problem

$$u_t + txu_x = 0,$$
$$u(x,0) = \frac{1}{1+x^2},$$

and sketch the characteristic curves.

Problem 9. Solve the problem

$$u_t + t^2 u_x = 0,$$

$$u(x, 0) = e^x,$$

and sketch the characteristic curves.

Problem 10. Find the general solution to the equation

$$xu_x + yu_y = 0,$$

and sketch the characteristic curves.

Problem 11. Solve the problem

$$\sqrt{1 - x^2}u_x + u_y = 0,$$
$$u(0, y) = y,$$

 $and \ sketch \ the \ characteristic \ curves.$

Problem 12. Solve the problem

$$u_t + xu_x = x,$$

$$u(x,0) = -x,$$

and sketch the characteristic curves.

3 The wave equation

Problem 13. Solve the IVP

$$u_{tt} - u_{xx} = 0,$$

$$u|_{t=0} = \begin{cases} 1, & x < 0, \\ 0, & x > 0, \end{cases}$$

$$u_t|_{t=0} = \begin{cases} 0, & x < 0, \\ 1, & x > 0. \end{cases}$$

Problem 14. Solve the IVP

$$u_{tt} - 3u_{xx} = 0,$$

$$u_{t=0} = e^x,$$

$$u_t|_{t=0} = \sin(x).$$

Problem 15. Solve the IVP

$$u_{tt} - u_{xx} = xt,$$

 $u(x, 0) = 0,$
 $u_t(x, 0) = 0.$

Problem 16. Solve the IBVP (x, t > 0)

$$u_{tt} - u_{xx} = 0,$$

 $u(x, 0) = \sin(x),$
 $u_t(x, 0) = 0,$
 $u_x(0, t) = 0.$

Problem 17. Determine $u|_{(x,t)=(50.1,12)}$ when u is a solution to the problem

$$u_{tt} - \pi^2 u_{xx} = 0,$$

$$u|_{t=0} = \begin{cases} e^{-\frac{x^2}{7}}, & x < 3\\ 0, & x > 3 \end{cases}$$

$$u_t|_{t=0} = 0.$$

Problem 18. Suppose that u(x, y, z, t) solves the wave equation $u_{tt} = c^2 \Delta u$ on the bounded domain Ω , with homogeneous Dirichlet boundary conditions on $\partial \Omega$. Prove that the energy of u

$$E_{\Omega}(t) := \frac{1}{2} \iiint_{\Omega} (u_t^2 + c^2 |\nabla u|^2) \, dx \, dy \, dz$$

is conserved.

Problem 19. Suppose that u(x, y, z, t) solves the wave equation $u_{tt} = c^2 \Delta u$ on the bounded domain Ω , with homogeneous Neumann boundary conditions on $\partial \Omega$. Prove that the energy of u

$$E_{\Omega}(t) := \frac{1}{2} \iiint_{\Omega} (u_t^2 + c^2 |\nabla u|^2) \, dx \, dy \, dz$$

is conserved.

Problem 20. Suppose that u(x, y, z, t) solves the wave equation $u_{tt} = c^2 \Delta u$ on the bounded domain Ω , with boundary conditions $\frac{\partial u}{\partial \nu} = \frac{\partial u}{\partial t}$ on $\partial \Omega$ (where ν is the outward pointing normal vector field on $\partial \Omega$). Is the energy of u

$$E_{\Omega}(t) := \frac{1}{2} \iiint_{\Omega} (u_t^2 + c^2 |\nabla u|^2) \, dx \, dy \, dz$$

increasing, decreasing, or constant?

Problem 21. Where does a solution u(x, y, z, t) to the homogeneous wave equation have to vanish if its initial data vanishes outside of the unit ball $\{\vec{x} \in \mathbb{R}^3 \mid ||x|| \le 1\}$?

4 The heat equation

Problem 22. Solve the heat equation IVP

$$\begin{split} u_t - u_{xx} &= 0, & -\infty < x, t < \infty, \\ u(x,0) &= \begin{cases} 1, & |x| < 1, \\ 0, & |x| > 1. \end{cases} \end{split}$$

Express your answer in terms of the error function

$$\operatorname{Erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz.$$

Problem 23. Solve the heat equation IVP

$$4u_t - u_{xx} = 0, \qquad -\infty < x, t < \infty,$$
$$u(x, 0) = e^{-x}.$$

Problem 24. Suppose that u is a solution to the 1d heat equation on (0, 1), satisfying the boundary conditions

$$u_x(0,t) - u(0,t) = 0,$$

 $u_x(1,t) = 0.$

Show that the function

$$E(t) = \int_0^1 u(x,t)^2 \, dx$$

is nonincreasing, and that it decreases unless u(x,t) is identically zero.

Problem 25. Suppose that u is a solution to the 1d heat equation $u_t = u_{xx}$ on $\{0 < x < 1, 0 < t < \infty\}$, with homogeneous Dirichlet boundary conditions and initial condition

$$u(x,0) = 4x(1-x).$$

Prove that 0 < u(x,t) < 1 for all t > 0 and all 0 < x < 1.

Problem 26. Suppose that u is a solution to the 1d heat equation $u_t = u_{xx}$ on $\{0 < x < 1, 0 < t < \infty\}$, with homogeneous Dirichlet boundary conditions and initial condition

$$u(x,0) = 1 - x^2$$

(a) Prove that u(x,t) is strictly positive for all t > 0 and 0 < x < 1.

(b) Prove that

$$\mu(t):=\max_{0\leq x\leq 1}u(x,t)$$

is a decreasing function of t.

5 Fourier series

- **Problem 27.** Determine the real Fourier series representation of $\sin\left(\frac{x}{2}\right)$ on the interval $(-\pi,\pi)$.
- **Problem 28.** Determine the real Fourier series representation of $\sinh(x)$ on the interval $(-\pi, \pi)$.

Problem 29. Determine the complex Fourier series representation of $e^{\alpha x}$ on the interval $(-\pi, \pi)$, for $\alpha \in \mathbb{C}$. Which values of α are "exceptional"?

Problem 30. Determine the real Fourier series representation of |x| on the interval (-1, 1).

Problem 31. Determine the sine Fourier series representation of $x(\pi - x)$ on the interval $(0, \pi)$.

Problem 32. Determine the sine Fourier series representation of x^2 on the interval (0,1).

Problem 33. Determine the sine Fourier series representation of 1 on the interval $(0, \pi)$.

Problem 34. Determine the cosine Fourier series representation of 1 on the interval $(0, \pi)$.

Problem 35. Determine the cosine Fourier series representation of x on the interval (0,1).

Problem 36. Determine the cosine Fourier series representation of x^2 on the interval (0,1).

6 Separation of variables

Problem 37. Using the method of separation of variables, solve the following problem:

$$\begin{split} & u_{tt} - u_{xx} = 0, & -\pi < x < \pi, \\ & u(-\pi, t) = 0, \\ & u(\pi, t) = 0, \\ & u(x, 0) = \sinh(x), \\ & u_t(x, 0) = 0. \end{split}$$

 $0 < x < \pi,$

Problem 38. Using the method of separation of variables, solve the following problem:

$$u_{tt} - 8u_{xx} = 0,$$

$$u(0,t) = u(\pi,t),$$

$$u_x(0,t) = u_x(\pi,t),$$

$$u(x,0) = x(\pi - x),$$

$$u_t(x,0) = 0.$$

Problem 39. Using the method of separation of variables, solve the following problem:

$$\begin{split} u_t - 7u_{xx} &= 0, & 0 < x < 1, \\ u(0,t) &= 0, \\ u_x(1,t) &= 0, \\ u(x,0) &= 1. \end{split}$$

Problem 40. Using the method of separation of variables, solve the following problem:

$$u_t - u_{xx} = 10u, \qquad -1 < x < 1,$$

$$u_x(-1,t) = 0,$$

$$u_x(1,t) = 0,$$

$$u(x,0) = |x|.$$

Problem 41. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$\Delta u = 0, \qquad \qquad 0 \le r < 2, \ -\pi \le \theta \le \pi,$$
$$u(2,\theta) = \pi^2 - \theta^2.$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^2 :

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Problem 42. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$\begin{aligned} \Delta u &= 0, & 1 < r < 2, \ -\pi \le \theta \le \pi, \\ u(1,\theta) &= \sin(2\theta), \\ u(2,\theta) &= |\theta|. \end{aligned}$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^2 :

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Problem 43. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$\Delta u = 0, \qquad 1 < r, -\pi \le \theta \le \pi,$$
$$u(1, \theta) = \theta^4.$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^2 :

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Problem 44. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$\Delta u = 0, \qquad 1 < r < 2, -\pi \le \theta \le \pi,$$
$$u(1, \theta) = 1 + \theta^2,$$
$$u_r(2, \theta) = 0.$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^2 :

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Problem 45. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$\begin{split} \Delta u &= 0, \qquad \qquad 0 \leq r < 3, \, 0 \leq \theta \leq \pi, \\ u(3,\theta) &= e^{\theta}, \\ u(r,0) &= u(r,\pi) = 0. \end{split}$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^2 :

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Problem 46. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$\begin{aligned} \Delta u &= 0, \qquad \qquad 0 \leq r < 2, \ 0 \leq \theta \leq \frac{\pi}{2}, \\ u(2,\theta) &= \theta, \\ u(r,0) &= u_{\theta}\left(r,\frac{\pi}{2}\right) = 0. \end{aligned}$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^2 :

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Problem 47. Consider the 2d Helmholtz equation

$$(\Delta + \omega^2)u = 0,$$

where ω is a constant. Separate variables in cartesian coordinates u(x,y) = X(x)Y(y), and write down the ODEs that X and Y must satisfy.

Problem 48. Consider the 2d Helmholtz equation

$$(\Delta + \omega^2)u = 0,$$

where ω is a constant. Separate variables in polar coordinates $u(r, \theta) = R(r)\Theta(\theta)$, and write down the ODEs that R and Θ must satisfy.

Problem 49. Consider the 3d Helmholtz equation

$$(\Delta + \omega^2)u = 0,$$

where ω is a constant. Separate variables in cartesian coordinates u(x, y, z) = X(x)Y(y)Z(z), and write down the ODEs that X, Y and Z must satisfy.

Problem 50. Consider the 3d Helmholtz equation

$$(\Delta + \omega^2)u = 0,$$

where ω is a constant. Separate variables in spherical coordinates $u(\rho, \theta, \phi) = R(\rho)\Theta(\theta)\Phi(\phi)$, and write down the ODEs that R, Θ and Φ must satisfy.

Fourier transforms $\mathbf{7}$

Problem 51. Calculate the Fourier transform of

$$f(x) = \begin{cases} 1, & |x| < 5, \\ 0, & |x| > 5. \end{cases}$$

Problem 52. Calculate the Fourier transform of

$$f(x) = \begin{cases} x, & |x| < 5, \\ 0, & |x| > 5. \end{cases}$$

Problem 53. Calculate the Fourier transform of e^{-4x^2} .

Problem 54. Calculate the Fourier transform of $e^{-3|x|}$.

Problem 55. Calculate the Fourier transform of $x^2e^{-|x|}$.

Problem 56. Calculate the Fourier transform of $x^4e^{-4x^2}$.

Problem 57. Calculate the Fourier transform of

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1, \\ 0, & |x| > 1. \end{cases}$$

Problem 58. Use the Fourier transform to solve the heat equation with convection problem

$$\begin{split} u_t &= \kappa u_{xx} + \mu u_x, & -\infty < x < \infty, \\ u(x,0) &= \phi(x), \\ \max |u| < \infty, \end{split}$$

where $\kappa > 0$.

Problem 59. Use the Fourier transform to solve

$$\begin{split} \Delta u &= 0, & -\infty < x < +\infty, \ y > 0, \\ u(x,0) &= x^4 e^{-4x^2}, \\ \max |u| &< \infty. \end{split}$$

Problem 60. Use the Fourier transform to solve

u

$$\begin{split} \Delta u &= 0, & -\infty < x < +\infty, \ 0 < y < 1, \\ u(x,0) &= \begin{cases} x, & |x| < 5, \\ 0, & |x| > 5, \end{cases} \\ u(x,1) &= \begin{cases} 1, & |x| < 5, \\ 0, & |x| > 5. \end{cases} \end{split}$$

Problem 61. Use the Fourier transform to solve the 2d heat equation

$$\begin{aligned} 4u_t &= \Delta u, & -\infty < x, y < +\infty, t > 0, \\ u(x, y, 0) &= \begin{cases} e^{-\frac{y^2}{2}}, & |x| < 5, \\ 0, & |x| > 5. \end{cases} \end{aligned}$$

8 Harmonic functions

Problem 62. Find all the harmonic functions on $\mathbb{R}^2_{x,y}$ which depend only on the radial coordinate $r = \sqrt{x^2 + y^2}$.

Problem 63. Suppose that u is a harmonic function on the open unit disc $\{x^2 + y^2 < 1\}$ which is continuous on the closed unit disc $\{x^2 + y^2 \le 1\}$ and has boundary value

$$u|_{x^2+y^2=1} = |\theta|^3, \quad -\pi \le \theta \le \pi.$$

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 64. Suppose that u is a harmonic function on the open unit disc $\{x^2 + y^2 < 1\}$ which is continuous on the closed unit disc $\{x^2 + y^2 \le 1\}$ and has boundary value

$$u|_{x^2+y^2=1} = \theta^2 - \theta^4, \qquad -\pi \le \theta \le \pi.$$

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 65. Suppose that u is a harmonic function on the open unit disc $\{x^2 + y^2 < 1\}$ which is continuous on the closed unit disc $\{x^2 + y^2 \le 1\}$ and has boundary value

$$u|_{x^2+y^2=1} = |\theta| + \sin(\theta), \qquad -\pi \le \theta \le \pi.$$

(a) Determine the minimum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 66. Suppose that u is a harmonic function on the open unit disc $\{x^2 + y^2 < 1\}$ which is continuous on the closed unit disc $\{x^2 + y^2 \le 1\}$ and has boundary value

$$u|_{x^2+y^2=1} = \left|\sin\left(\frac{\theta}{2}\right)\right| \qquad -\pi \le \theta \le \pi.$$

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 67. Suppose that u is a harmonic function on the open disc $\{x^2 + y^2 < 4\}$ which is continuous on the closed disc $\{x^2 + y^2 \le 4\}$ and has boundary value

$$u|_{x^2+y^2=4} = \frac{3}{2}xy + 1.$$

- (a) Determine the maximum value that u takes on the closed unit disc.
- (b) Determine u(0).

9 Calculus of variations

Problem 68. Find the curve y = u(x) that makes the integral

$$\int_0^1 \left[\left(\frac{du}{dx} \right)^2 + xu \right] dx$$

stationary, subject to the constraints u(0) = 0, u(1) = 1.

Problem 69. Find the Euler-Lagrange equation for the action

$$S[u] = \iint \left(\frac{1}{2}u_x u_t + u_x^3 - \frac{1}{2}u_{xx}^2\right) \, dx \, dt.$$

Problem 70. Find the Euler-Lagrange equation for the functional

$$T[y] = \int_0^a \sqrt{\frac{1 + (y')^2}{2gy}} \, dx$$

Problem 71. Find the Euler-Lagrange equations and boundary conditions for the functional

$$S[u] = \int_0^1 \int_0^1 \left(\frac{1}{2} \|\nabla u\|^2 + \frac{x}{1+y^2} u\right) \, dx \, dy + \int_{\partial([0,1]\times[0,1])} \left(\frac{x}{2} u^2 - u\right) \, dvol.$$

Problem 72. Find the Euler-Lagrange equation for the functional

$$S[u] = \int_{-2}^{2} \frac{u^2 \sqrt{1 + \left(\frac{du}{dx}\right)^2}}{2} \, dx.$$

Problem 73. Let $\Omega \subset \mathbb{R}^2$ be an open domain with smooth boundary. The area of a surface in \mathbb{R}^3 defined as the graph of a function $z : \Omega \to \mathbb{R}$ is

$$A[z] = \iint_{\Omega} \sqrt{1 + z_x^2 + z_y^2} \, dx \, dy.$$

Find the Euler-Lagrange equation for the functional A.

References

- [IvrXX] Victor Ivrii. Partial Differential Equations. online textbook for APM346, 20XX.
- [Str08] Walter A. Strauss. Partial differential equations. John Wiley & Sons, Ltd., Chichester, second edition, 2008. An introduction.