
APM 346 – Final Exam Practice Problems.

Richard Derryberry

April 5, 2019

(Problems are mostly taken from or variants of problems from [IvrXX] or [Str08].)

1 Introductory explicitly solvable problems

Problem 1. Solve the equation 5uy + uxy = 0.

Problem 2. Solve the equation uxy − 4ux = ex+5y.

Problem 3. Solve the equation uxy = uxuy.

Problem 4. Solve the system of equations

uxy = 0,

uyz = 0,

uzx = 1.

2 Method of characteristics

Problem 5. Solve the problem

2ut + 3ux = 0,

u(x, 0) = sin(x),

and sketch the characteristic curves.

Problem 6. Solve the problem

ux + uy + u = ex+2y,

u(x, 0) = 0,

and sketch the characteristic curves.

Problem 7. Find the general solution to the equation

(1 + t2)ut + ux = 0,

and sketch the characteristic curves.

Problem 8. Solve the problem

ut + txux = 0,

u(x, 0) =
1

1 + x2
,

and sketch the characteristic curves.
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Problem 9. Solve the problem

ut + t2ux = 0,

u(x, 0) = ex,

and sketch the characteristic curves.

Problem 10. Find the general solution to the equation

xux + yuy = 0,

and sketch the characteristic curves.

Problem 11. Solve the problem √
1− x2ux + uy = 0,

u(0, y) = y,

and sketch the characteristic curves.

Problem 12. Solve the problem

ut + xux = x,

u(x, 0) = −x,

and sketch the characteristic curves.

3 The wave equation

Problem 13. Solve the IVP

utt − uxx = 0,

u|t=0 =

{
1, x < 0,
0, x > 0,

ut|t=0 =

{
0, x < 0,
1, x > 0.

Problem 14. Solve the IVP

utt − 3uxx = 0,

u|t=0 = ex,

ut|t=0 = sin(x).

Problem 15. Solve the IVP

utt − uxx = xt,

u(x, 0) = 0,

ut(x, 0) = 0.

Problem 16. Solve the IBVP (x, t > 0)

utt − uxx = 0,

u(x, 0) = sin(x),

ut(x, 0) = 0,

ux(0, t) = 0.
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Problem 17. Determine u|(x,t)=(50.1,12) when u is a solution to the problem

utt − π2uxx = 0,

u|t=0 =

{
e−

x2

7 , x < 3,
0, x > 3,

ut|t=0 = 0.

Problem 18. Suppose that u(x, y, z, t) solves the wave equation utt = c2∆u on the bounded domain Ω, with
homogeneous Dirichlet boundary conditions on ∂Ω. Prove that the energy of u

EΩ(t) :=
1

2

∫∫∫
Ω

(u2
t + c2|∇u|2) dx dy dz

is conserved.

Problem 19. Suppose that u(x, y, z, t) solves the wave equation utt = c2∆u on the bounded domain Ω, with
homogeneous Neumann boundary conditions on ∂Ω. Prove that the energy of u

EΩ(t) :=
1

2

∫∫∫
Ω

(u2
t + c2|∇u|2) dx dy dz

is conserved.

Problem 20. Suppose that u(x, y, z, t) solves the wave equation utt = c2∆u on the bounded domain Ω, with
boundary conditions ∂u

∂ν = ∂u
∂t on ∂Ω (where ν is the outward pointing normal vector field on ∂Ω). Is the

energy of u

EΩ(t) :=
1

2

∫∫∫
Ω

(u2
t + c2|∇u|2) dx dy dz

increasing, decreasing, or constant?

Problem 21. Where does a solution u(x, y, z, t) to the homogeneous wave equation have to vanish if its
initial data vanishes outside of the unit ball {~x ∈ R3 | ‖x‖ ≤ 1}?

4 The heat equation

Problem 22. Solve the heat equation IVP

ut − uxx = 0, −∞ < x, t <∞,

u(x, 0) =

{
1, |x| < 1,
0, |x| > 1.

Express your answer in terms of the error function

Erf(x) =
2√
π

∫ x

0

e−z
2

dz.

Problem 23. Solve the heat equation IVP

4ut − uxx = 0, −∞ < x, t <∞,
u(x, 0) = e−x.

Problem 24. Suppose that u is a solution to the 1d heat equation on (0, 1), satisfying the boundary conditions

ux(0, t)− u(0, t) = 0,

ux(1, t) = 0.



APM 346 Final Exam Practice Problems 4

Show that the function

E(t) =

∫ 1

0

u(x, t)2 dx

is nonincreasing, and that it decreases unless u(x, t) is identically zero.

Problem 25. Suppose that u is a solution to the 1d heat equation ut = uxx on {0 < x < 1, 0 < t < ∞},
with homogeneous Dirichlet boundary conditions and initial condition

u(x, 0) = 4x(1− x).

Prove that 0 < u(x, t) < 1 for all t > 0 and all 0 < x < 1.

Problem 26. Suppose that u is a solution to the 1d heat equation ut = uxx on {0 < x < 1, 0 < t < ∞},
with homogeneous Dirichlet boundary conditions and initial condition

u(x, 0) = 1− x2.

(a) Prove that u(x, t) is strictly positive for all t > 0 and 0 < x < 1.

(b) Prove that
µ(t) := max

0≤x≤1
u(x, t)

is a decreasing function of t.

5 Fourier series

Problem 27. Determine the real Fourier series representation of sin
(
x
2

)
on the interval (−π, π).

Problem 28. Determine the real Fourier series representation of sinh (x) on the interval (−π, π).

Problem 29. Determine the complex Fourier series representation of eαx on the interval (−π, π), for α ∈ C.
Which values of α are “exceptional”?

Problem 30. Determine the real Fourier series representation of |x| on the interval (−1, 1).

Problem 31. Determine the sine Fourier series representation of x(π − x) on the interval (0, π).

Problem 32. Determine the sine Fourier series representation of x2 on the interval (0, 1).

Problem 33. Determine the sine Fourier series representation of 1 on the interval (0, π).

Problem 34. Determine the cosine Fourier series representation of 1 on the interval (0, π).

Problem 35. Determine the cosine Fourier series representation of x on the interval (0, 1).

Problem 36. Determine the cosine Fourier series representation of x2 on the interval (0, 1).

6 Separation of variables

Problem 37. Using the method of separation of variables, solve the following problem:

utt − uxx = 0, −π < x < π,

u(−π, t) = 0,

u(π, t) = 0,

u(x, 0) = sinh(x),

ut(x, 0) = 0.



APM 346 Final Exam Practice Problems 5

Problem 38. Using the method of separation of variables, solve the following problem:

utt − 8uxx = 0, 0 < x < π,

u(0, t) = u(π, t),

ux(0, t) = ux(π, t),

u(x, 0) = x(π − x),

ut(x, 0) = 0.

Problem 39. Using the method of separation of variables, solve the following problem:

ut − 7uxx = 0, 0 < x < 1,

u(0, t) = 0,

ux(1, t) = 0,

u(x, 0) = 1.

Problem 40. Using the method of separation of variables, solve the following problem:

ut − uxx = 10u, −1 < x < 1,

ux(−1, t) = 0,

ux(1, t) = 0,

u(x, 0) = |x|.

Problem 41. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 0 ≤ r < 2, −π ≤ θ ≤ π,
u(2, θ) = π2 − θ2.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 42. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 1 < r < 2, −π ≤ θ ≤ π,
u(1, θ) = sin(2θ),

u(2, θ) = |θ|.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 43. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 1 < r, −π ≤ θ ≤ π,
u(1, θ) = θ4.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)
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Problem 44. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 1 < r < 2, −π ≤ θ ≤ π,
u(1, θ) = 1 + θ2,

ur(2, θ) = 0.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 45. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 0 ≤ r < 3, 0 ≤ θ ≤ π,
u(3, θ) = eθ,

u(r, 0) = u(r, π) = 0.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 46. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 0 ≤ r < 2, 0 ≤ θ ≤ π

2
,

u(2, θ) = θ,

u(r, 0) = uθ

(
r,
π

2

)
= 0.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 47. Consider the 2d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in cartesian coordinates u(x, y) = X(x)Y (y), and write down the
ODEs that X and Y must satisfy.

Problem 48. Consider the 2d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in polar coordinates u(r, θ) = R(r)Θ(θ), and write down the ODEs
that R and Θ must satisfy.

Problem 49. Consider the 3d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in cartesian coordinates u(x, y, z) = X(x)Y (y)Z(z), and write
down the ODEs that X, Y and Z must satisfy.

Problem 50. Consider the 3d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in spherical coordinates u(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ), and write down
the ODEs that R, Θ and Φ must satisfy.
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7 Fourier transforms

Problem 51. Calculate the Fourier transform of

f(x) =

{
1, |x| < 5,
0, |x| > 5.

Problem 52. Calculate the Fourier transform of

f(x) =

{
x, |x| < 5,
0, |x| > 5.

Problem 53. Calculate the Fourier transform of e−4x2

.

Problem 54. Calculate the Fourier transform of e−3|x|.

Problem 55. Calculate the Fourier transform of x2e−|x|.

Problem 56. Calculate the Fourier transform of x4e−4x2

.

Problem 57. Calculate the Fourier transform of

f(x) =

{
1− |x|, |x| < 1,
0, |x| > 1.

Problem 58. Use the Fourier transform to solve the heat equation with convection problem

ut = κuxx + µux, −∞ < x <∞,
u(x, 0) = φ(x),

max |u| <∞,

where κ > 0.

Problem 59. Use the Fourier transform to solve

∆u = 0, −∞ < x < +∞, y > 0,

u(x, 0) = x4e−4x2

,

max |u| <∞.

Problem 60. Use the Fourier transform to solve

∆u = 0, −∞ < x < +∞, 0 < y < 1,

u(x, 0) =

{
x, |x| < 5,
0, |x| > 5,

u(x, 1) =

{
1, |x| < 5,
0, |x| > 5.

Problem 61. Use the Fourier transform to solve the 2d heat equation

4ut = ∆u, −∞ < x, y < +∞, t > 0,

u(x, y, 0) =

{
e−

y2

2 , |x| < 5,
0, |x| > 5.
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8 Harmonic functions

Problem 62. Find all the harmonic functions on R2
x,y which depend only on the radial coordinate r =√

x2 + y2.

Problem 63. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 = |θ|3, −π ≤ θ ≤ π.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 64. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 = θ2 − θ4, −π ≤ θ ≤ π.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 65. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 = |θ|+ sin(θ), −π ≤ θ ≤ π.

(a) Determine the minimum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 66. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 =

∣∣∣∣sin(θ2
)∣∣∣∣ − π ≤ θ ≤ π.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 67. Suppose that u is a harmonic function on the open disc {x2 + y2 < 4} which is continuous on
the closed disc {x2 + y2 ≤ 4} and has boundary value

u|x2+y2=4 =
3

2
xy + 1.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).
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9 Calculus of variations

Problem 68. Find the curve y = u(x) that makes the integral∫ 1

0

[(
du

dx

)2

+ xu

]
dx

stationary, subject to the constraints u(0) = 0, u(1) = 1.

Problem 69. Find the Euler-Lagrange equation for the action

S[u] =

∫∫ (
1

2
uxut + u3

x −
1

2
u2
xx

)
dx dt.

Problem 70. Find the Euler-Lagrange equation for the functional

T [y] =

∫ a

0

√
1 + (y′)2

2gy
dx.

Problem 71. Find the Euler-Lagrange equations and boundary conditions for the functional

S[u] =

∫ 1

0

∫ 1

0

(
1

2
‖∇u‖2 +

x

1 + y2
u

)
dx dy +

∫
∂([0,1]×[0,1])

(x
2
u2 − u

)
dvol.

Problem 72. Find the Euler-Lagrange equation for the functional

S[u] =

∫ 2

−2

u2

√
1 +

(
du
dx

)2
2

dx.

Problem 73. Let Ω ⊂ R2 be an open domain with smooth boundary. The area of a surface in R3 defined as
the graph of a function z : Ω→ R is

A[z] =

∫∫
Ω

√
1 + z2

x + z2
y dx dy.

Find the Euler-Lagrange equation for the functional A.
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