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Today we begin studying our last topic for the semester: the calculus of variations!

References being used: [IvrXX, Ch.10] (§10.1) and [Str08, Ch.14.3].

1 Motivation: Dirichlet’s Principle

To motivate the study of calculus of variations, we consider the following problem. Let Ω be a bounded
domain, and consider the collection of functions w on Ω which satisfy the Dirichlet boundary condition

w|∂Ω(~x) = h(~x). (1)

Define the energy of such a function by

E[w] :=
1

2

∫
Ω

‖∇w‖2d~x. (2)

Physical systems tend to “prefer” to be in the state of least possible energy, so by minimizing E[w] we can
discover what our system will look like at equilibrium. The claim is the following:

Theorem 1.1 (Dirichlet’s Principle). The energy (2) is minimized by the unique harmonic function that
satisfies the boundary condition (1).

Idea of proof. Suppose that u(~x) is a function that minimises the energy, and let v(~x) be an arbitrary function
that vanishes on ∂Ω. Then u+ εv still satisfies the boundary condition (1), and so by hypothesis

E[u] ≤ E[u+ εv] = E[u]− ε
∫

Ω

∆uv d~x+ ε2E[v].

Think of the right hand side as a function of ε, e(ε) = E[u + εv]. It is minimised at ε = 0, and so by first
year calculus,

de

dε

∣∣∣∣
ε=0

= 0.

But this is just ∫
Ω

∆uvd~x = 0,

and since this hold for arbitrary v we must have ∆u = 0 on Ω.

2 Variation of functionals

This leads us naturally to the study of functionals.

1

http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter10/S10.1.html
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Definition 2.1. A functional is a map from some space of functions F to the real or complex numbers,

Φ : F → R/C. (3)

If F is a vector space and Φ is a linear map, we say that Φ is a linear functional.

Example 1. Let’s consider some examples of functionals.

(i) We have already seen an example: the energy functional (2),

E[w] =
1

2

∫
Ω

‖∇w‖2d~x.

Exercise: Think about what the domain of the energy functional could be; i.e. what space of functions
could w belong to?

(ii) Let F = C∞c (Ω), the space of infinitely differentiable functions which vanish outside a closed and
bounded subset of Ω, and let f be a function satisfying

∫
Ω
|f | < ∞. Then we have a functional

Φf : C∞c (Ω)→ R/C defined by

Φf [u] :=

∫
Ω

f(~x)u(~x) d~x. (4)

(iii) Let F = C(Ω), the space of continuous functions on Ω, and choose a point ~x ∈ Ω. Then there is a
functional

δ~x[u] := u(~x), (5)

which just evaluates each function at the chosen point. Note that we have encountered this before,
where we called it the “Dirac-δ function” and wrote

δ~x[u] =

∫
Ω

δ(~y − ~x)u(~y) d~y.

(iv) Let I ⊂ R be a closed interval, and let F = C(I,R) (continuous real-valued functions). Then there are
functionals

M [u] := max
x∈I

u(x), (6)

m[u] := min
x∈I

u(x). (7)

We could also replace u(x) by |u(x)| in the above definitions – this then immediately generalises to
continuous maps to any space with a notion of “magnitude”.

Much as in the example of the energy functional in Section 1, the core problem we will be considering in
what follows is the question of how to maximise or minimise a given functional.

2.1 Warm-up: functions of one variable

To start with, let’s begin by considering a space of real valued functions of a single variable, q(t) on an
interval [t0, t1],

q : [t0, t1]→ R.

For the time derivative of q, we adopt the “dot notation” sometimes used in physics, dq
dt (t) = q̇(t). To make

life easier, let’s assume that t0 = 0 and t1 = 1.
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2.1.1 Calculating the variation

Consider a functional of the form

S[q] =

∫ 1

0

L(q, q̇, t) dt, (8)

where L(q, q̇, t), the Lagrangian, is an integrable expression in the variables t, q, q̇.

Consider making a “small” variation of the function q,

q → q + δq, (9)

where for the purposes of this class you should think of δq = εφ for some fixed function φ and ε a small
parameter. Under this variation, our functional changes as

S[q + δq] =

∫ 1

0

L(q + δq, q̇ + δq̇, t) dt

=

∫ 1

0

(
L(q, q̇, t) +

∂L

∂q
(q, q̇, t)δq +

∂L

∂q̇
(q, q̇, t)δq̇ + · · ·

)
dt

= S[q] +

∫ 1

0

(
∂L

∂q
(q, q̇, t)δq +

∂L

∂q̇
(q, q̇, t)δq̇

)
dt+ · · ·

where we have taken the Taylor expansion of L and the “· · · ” represent terms which are of quadratic or higher
order in the variations δq, δq̇. The term which is linear is δq and δq̇ is something like the “first derivative of
S with respect to q”.

Definition 2.2. The variation of the functional S is the the linear functional with respect to δq given by

δSq :=

∫ 1

0

(
∂L

∂q
(q, q̇, t)δq +

∂L

∂q̇
(q, q̇, t)δq̇

)
dt. (10)

Now, we make the assumption that all of the functions we are considering are “sufficiently smooth” – i.e.
that whenever we come across an operation that would require some measure of differentiability to perform,
we will assume that our functions satisfy that requirement. Having made this assumption, we integrate by
parts to obtain

δSq =

∫ 1

0

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δq dt+

∂L

∂q̇
δq

∣∣∣∣1
0

. (11)

2.1.2 Stationary points

Now, consider placing restrictions on the variations δq that we are allowed to consider – call this a choice of
admissible variations.

Definition 2.3. If δSq = 0 for all admissible variations δq, we call q a stationary point of the functional S.

For now, let’s take as admissible those variations satisfying

δq(0) = δq(1) = 0.

Then

δS =

∫ 1

0

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δq dt.
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Lemma 2.1. Let f : [0, 1]→ R be a continuous function. If∫ 1

0

f(t)φ(t) dt = 0

for all φ satisfying φ(0) = φ(1) = 0, then f ≡ 0 on [0, 1].

Proof. It suffices to check that f is nowhere strictly positive. Suppose that f(t∗) > 0 for some t∗ ∈ [0, 1].
Then f(t) > 0 for all t on a small interval (a, b) containing t∗.

Now, consider a function φ(x) satisfying

φ(t) ≥ 0, t ∈ (a, b), φ(t∗) > 0,

and φ = 0 outside (a, b).1 Then we also have f(t)φ(t) > 0 on (a, b), and we derive a contradiction.

We have now shown:

Theorem 2.2. The function q is a stationary point of the action (8) with respect to variations satisfying
δq(0) = δq(1) = 0 if and only if it satisfies the Euler-Lagrange equation

δS

δq
:=

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0. (12)

Example 2. As a warm-up example, consider the Lagrangian

L =
1

2
mq̇2 − V (q),

where V is some “potential energy” function that depends only on q. Then

∂L

∂q
= −dV

dq
,

∂L

∂q̇
= mq̇,

and so the Euler Lagrange equation reads

−dV
dq

= mq̈.

If we interpret q as the position of a particle, suggestively relabel

q(t)→ x(t),

q̇(t)→ v(t),

q̈(t)→ a(t),

and define F := −dVdx , we obtain
F = ma,

i.e. Newton’s second law of motion!

From (12) we can immediately obtain a “conservation law” – if L does not explicitly depend on q, then

d

dt

(
∂L

∂q̇

)
= 0,

i.e.
∂L

∂q̇
≡ C

is constant with time. The can be regarded as a “conservation of momentum” statement – indeed, in Example
2 above if we take V ≡ 0 (i.e. a “free particle”, moving in the absence of any force), we find that p = mv is
the conserved quantity, which is precisely the classical definition of the linear momentum of a particle.

1We take the existence of an appropriately smooth such function for granted, but one can be explicitly constructed.
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2.1.3 Extremums

Recall that the “core problem” we were considering was the minimisation or maximisation of particular
functionals.

Definition 2.4. Let S be a functional, and suppose that we have specfied a class of admissible variations.

(a) If S[q] ≥ S[q + δq] for all small admissible variations δq, we call q a local maximum of S.

(b) If S[q] ≤ S[q + δq] for all small admissible variations δq, we call q a local minimum of S.

In either of the above cases, we call q a local extremum of S.

Theorem 2.3. If q is a local extrumum of S, and the variation with respect to all small admissible variations
exists, then q is a stationary point of S.

Proof. Suppose that q is a local minimum, and let δq = εφ for some fixed φ and small ε. Then

S[q + δq]− S[q] = ε · δS(φ) +O(ε2).

Suppose that δS(φ) > 0 (< 0 can be dealt with similarly). Take ε < 0, so that

εδS(φ) = −|ε|δS(φ) < 0.

By choose |ε| small enough, we can arrange the terms of O(ε2) to have smaller magnitude that |εδS(φ)| – but
then

S[q + δq]− S[q] < 0,

and we arrive at a contradiction.

2.1.4 Boundary terms

Suppose now that we change our class of admissible variations δq – rather than placing a vanishing condition
at both endpoints, we only require

δq(0) = 0.

If q is to be a stationary point of S, it is still necessary for q to satisfy the Euler-Lagrange equation – however
it is no longer sufficient. From integration by parts, we are left with the term

δS =
∂L

∂q̇
δq

∣∣∣∣
t=1

,

and since δq(1) is arbitrary we arrive at the condition

∂L

∂q̇

∣∣∣∣
t=1

= 0.

Example 3. For instance, consider the Lagrangian of Example 2,

L =
1

2
mq̇2 − V (q)

from which we derived Newton’s second law F = ma in the form

−∂V
∂q

= mq̈.

Relaxing the class of admissible variations as above, we find that

mq̇(1) = 0,

i.e. since m 6= 0 we have the Neumann BC dq
dt

∣∣∣
t=1

= 0.
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Since we are now allowing variations of our function at t = 1, we can consider a more general functional

S[q] =

∫ 1

0

L(q, q̇, t)dt+M1(q(1)), (13)

where M1 is called a boundary term. The linear term in a Taylor approximation to M1 is

∂M1

∂q
δq,

and so

δS =

(
∂L

∂q̇
+
∂M1

∂q

)
δq(1).

The same arguments can be applied to the left boundary point t = 0 also, and we find:

Theorem 2.4. The function q is a stationary point of the action

S[q] =

∫ 1

0

L(q, q̇, t) dt+M0(q(0)) +M1(q(1)) (14)

with respect to all variations δq if and only if it satisfies the Euler-Lagrange equation

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0,

together with the boundary conditions(
∂L

∂q̇
− ∂M0

∂q

)∣∣∣∣
t=0

=

(
∂L

∂q̇
+
∂M1

∂q

)∣∣∣∣
t=1

= 0. (15)

Exercise: Suppose that our functional includes higher-order derivatives,

S[q] =

∫ 1

0

L(q, q̇, q̈, t) dt+M0(q(0), q̇(0)) +M1(q(1), q̇(1)).

Show that q is a stationary point iff it satisfies the Euler-Lagrange equation

∂L

∂q
− d

dt

(
∂L

∂q̇

)
+
d2

dt2

(
∂L

∂q̈

)
= 0,

together with the boundary conditions (
∂Mi

∂q̇(i)
− (−1)i

∂L

∂q̈

∣∣∣∣
t=i

)
= 0,(

∂Mi

∂q(i)
− (−1)i

∂L

∂q̇

∣∣∣∣
t=i

+ (−1)i
d

dt

(
∂L

∂q̈

)∣∣∣∣
t=i

)
= 0,

where i = 0, 1. What are the admissible variations I have taken in order to obtain these boundary conditions?
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