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March 21, 2019

Continuing from the end the last lecture, we will consider some applications of spherical harmonics.

References being used: [IvrXX, §8.1] (§8.1) and [Str08, Ch.10].

1 Applications of spherical harmonics

Recall from Lecture 19 that we found a complete orthogonal system for L2-functions on the unit sphere,

Y ml (θ, φ) = P
|m|
l (cos θ)eimθ, 0 ≤ l <∞, |m| ≤ l, (1)

which were simultaneous eigenvectors for the Laplacian and the generator of rotations around the z-axis ∂
∂φ

∆S2Y ml = −l(l + 1)Y ml ,

∂

∂φ
Y ml = −m2Y ml .

The functions Pml appearing in (1) are the associated Legendre functions (or Legendre polynomials for m = 0)
given by

Pl(s) =
1

2ll!

dl

dsl
(s2 − 1)l, (2)

Pml (s) = (−1)m(1− s2)
m
2
dm

dsm
Pl(s); (3)

these solved the differential equations

d

ds

(
(1− s2)

dP

ds

)
+

(
l(l + 1)− m2

1− s2

)
P = 0. (4)

1.1 Dirichlet problem inside and outside the ball

Let’s start by considering the problem that we started thinking about last lecture (before we discovered
spherical harmonics):

∆u = 0, in or outside of BR(0), (5)

u = g, on SR(0) = ∂BR(0). (6)

By separating variables u = R(ρ)Y (θ, φ) we obtained the system of DEs

ρ2R′′(ρ) + 2R′(ρ)− λR(ρ) = 0, (7)

∆S2Y (θ, φ) + λY (θ, φ) = 0. (8)
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Solving (8), we found the spherical harmonics Y ml , 0 ≤ l <∞, |m| ≤ l, where the eigenvalues of the Laplace
operator are given by

λ = l(l + 1). (9)

The radial equation (7) is of Euler type, and has solutions R(ρ) = ρα where α(α + 1) − l(l + 1) = 0. The
roots of this equation are α = l,−l − 1, one of which is positive, the other of which is negative.

Inside the ball we require the solution be nonsingular at 0; outside the ball we require boundedness. Discarding
either the positive or negative powers of ρ as is appropriate, we arrive at the separated solutions

umin,l(ρ, θ, φ) = ρlY ml (θ, φ), (10)

umout,l(ρ, θ, φ) = ρ−l−1Y ml (θ, φ), , (11)

and so the Dirichlet problem has series solutions given by

uin =

∞∑
l=0

Almρ
lY ml , (12)

uout =

∞∑
l=0

Blmρ
−l−1Y ml , (13)

(14)

where the coefficients Alm and Blm are determined by the decomposition of the boundary data g(θ, φ) into
spherical harmonics.

Example 1. Suppose that we want to solve the Dirichlet problem in ball or radius R, BR(0) and with
boundary conditions

g(θ, φ) = sin(θ) cos(θ) cos(φ).

Recalling the table of spherical harmonics from last time, we see that this is in fact the real spherical harmonic
P 1
2 (l = 2). So the series solution collapses to a single term

u =
( ρ
R

)2
sin(θ) cos(θ) cos(φ).

This can alternately be expressed in cartesian coordinates as

u =
ρ2

R2

xz

ρ2
=
xz

R2
.

Remark 1.1. In fact all of the separated solutions for the Laplace equation in the solid ball umin,l are given
by polynomials in the cartesian coordinates x, y, z (called – unsurprisingly – harmonic polynomials). As an
exercise you should try to show this – alternately, consult [Str08, Ch.10.3].

1.2 Wave equation on the ball

Now, instead of the Laplace equation, let’s consider the homogeneous Dirichlet problem for the wave equation

utt − c2∆u = 0, in BR(0), (15)

u|SR(0) = 0. (16)

First let’s separate out the time variable, u = T (t)v(~x). We get

T ′′(t)

T (t)
− c2 ∆v

v︸︷︷︸
=−λ

= 0,
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which gives the system of equations

∆v = −λv, (17)

T ′′(t) + c2λT (t) = 0. (18)

Equation (17) is called the Helmholtz equation. Separating variables again as v = R(ρ)Y (θ, φ), we obtain(
ρ2R′′ + 2ρR′

R
+ λρ2

)
+

∆S2Y

Y
= 0.

We already know that the solutions to the Y -eigenvalue problem are spherical harmonics Y ml , with 0 ≤ l <∞
(since we are inside the ball). Substituting in −l(l + 1) for the Y -terms in the equation we arrive at the
equation

R′′(ρ) +
2

ρ
R′(ρ) +

(
λ− l(l + 1)

ρ2

)
R(ρ) = 0. (19)

1.2.1 Bessel functions

To solve (19) we will put it into a standard form, whose solutions are known. First make the change of
coordinates w(ρ) :=

√
ρR(ρ). We now have

d2w

dρ2
(ρ) +

1

ρ

dw

dρ
(ρ) +

(
λ−

l(l + 1) + 1
4

ρ2

)
w(ρ) = 0. (20)

Next, rescale the radial variable as

r =
√
λρ,

d

dρ
=
√
λ
d

dr
.

With this rescaling, the ODE becomes

d2w

dr
+

1

r

dw

dr
+

(
1−

l(l + 1) + 1
4

r2

)
w = 0, (21)

which is exactly Bessel’s differential equation

d2w

dr2
+

1

r

dw

dr
+

(
1− s2

r2

)
w = 0, (22)

at s =
√
l(l + 1) + 1

4 =
√

(l + 1
2 )2 = ±

(
l + 1

2

)
.

How would one actually solve an ODE like (22)? One way would be to search for a series solution, of the
form

w(r) = rα
∞∑
n=0

anr
n, (23)

and then use the Bessel equation (22) to obtain

• the possible values of α (solution: α = ±s),

• vanishing of the odd coefficients, and

• a recursion relation on the even coefficients an = − an−2

(α+n)2−s2 .



APM 346 Lecture 20 4

For any s ∈ R\{−1,−2,−3, . . .} this logic can in fact be followed through to obtain an honest series solution
to (22), which with its standard normalisation is given by

Js(r) =

∞∑
n=0

(−1)n

Γ(n+ 1)Γ(n+ s+ 1)

(r
2

)2n+s
. (24)

Here Γ is the gamma function which extends the factorial function on the integers in the sense that

Γ(n+ 1) = n!

for n ∈ Z≥0.

For an introduction to some of the properties of Bessel functions, see [Str08, Ch.10.5].

1.2.2 Back to the wave equation

Let’s now apply our new-found knowledge of Bessel functions to the wave equation. Our solution w(ρ) is
going to be a Bessel function, and since we require the solution to be nonsingular at zero we see from (24)
that we need a solution with s > 0. Putting this together, we have that

w(ρ) = Jl+ 1
2
(
√
λρ),

and so the radial function R is

R(ρ) =
Jl+ 1

2
(
√
λρ)

√
ρ

. (25)

For an idea of what (25) looks like see Figure 1.
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Figure 1: The first four spherical Bessel functions.

To determine the allowed values of λ, apply the Dirichlet boundary condition R(R) = 0 to find the equation

Jl+ 1
2
(
√
λR) = 0. (26)

Remark 1.2. Compare this to the application of Dirichlet BCs to the equation X ′′ + λX = 0 on 0 ≤ x ≤ l –
there the equation to solve was sin(

√
λl) = 0, which we could do explicitly.
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Figure 2: Zeroes of the first spherical Bessel function.

Although we cannot solve (26) explicitly, we are able to say that there are infinitely many zeros, tending
towards infinity (see e.g. Figure 2). Denote by

λl,1 < λl,2 < λl,3 < · · · (27)

the values of λ which solve (26). Then the ρ-components of our separated solution may be written as

Rl,k(ρ) =
Jl+ 1

2
(
√
λl,kρ)

√
ρ

. (28)

Finally, to finish solving the wave equation via separation of variables, we return to the equation

T ′′ + c2λT = 0,

which has solutions

Tlk(t) = A cos(c
√
λl,kt) +B sin(c

√
λl,kt). (29)

So we find that

u(ρ, θ, φ, t) =

∞∑
l=0

∞∑
k=1

l∑
m=−l

(Alkm cos(c
√
λl,kt) +Blkm sin(c

√
λl,kt))

Jl+ 1
2
(
√
λl,kρ)

√
ρ

Y ml (θ, φ). (30)

As always, the coefficients Alkm and Blkm will be determined by two initial conditions.

1.2.3 Heat equation on the ball

Note that the same separation of variables arguments could have been run up until (28) to solve the heat
equation1

ut = D∆u

on the ball BR(0) with homogeneous Dirichlet boundary conditions. The final result would be the familiar
looking expression

u(ρ, θ, φ, t) =

∞∑
l=0

∞∑
k=1

l∑
m=−l

Alkme
−Dλl,k

Jl+ 1
2
(
√
λl,kρ)

√
ρ

Y ml (θ, φ), (31)

where the coefficients Alkm are determined by the initial condition.

1We use the notation D instead of k for the coefficient in the heat equation here to avoid confusion with the summation
index.
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