
APM 346 Lecture 16.

Richard Derryberry

March 7, 2019

We will soon encounter problems that will have symmetries we can exploit to find the solution (e.g. spherical
symmetry). To prepare for this, let’s spend this lecture considering how one would express the Laplace
operator in different coordinate systems.

References being used: [IvrXX, §6.3] (§6.3) and [Str08, Ch.6.1].

1 The Laplace operator in different coordinates

Recall that we defined the Laplace operator on Rn by:

∆u :=

n∑
i=1

∂2u

∂x2
i

(1)

1.1 Polar coordinates

Suppose that we want to write the 2d Laplace operator in polar coordinates

x = r cos(θ) (2)

y = r sin(θ) (3)

To find the derivatives rx, ry, etc., we could attempt to invert this coordinate change – up to choosing a
branch of arctan, we would get

r =
√
x2 + y2 (4)

θ = arctan
(y
x

)
(5)

Rather than differentiating (4) and (5), let’s differentiate (2) and (3) with respect to x and y. We get the
equations

1 =
∂r

∂x
cos(θ)− r sin(θ)

∂θ

∂x

1 =
∂r

∂y
sin(θ) + r cos(θ)

∂θ

∂y

0 =
∂r

∂y
cos(θ)− r sin(θ)

∂θ

∂y

0 =
∂r

∂x
sin(θ) + r cos(θ)

∂θ

∂x

1

http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter6/S6.3.html


APM 346 Lecture 16 2

Multiply the first and third lines by cos(θ) and the second and fourth lines by sin(θ) to get

cos(θ) = cos2(θ)
∂r

∂x
− r sin(θ) cos(θ)

∂θ

∂x

sin(θ) = sin2(θ)
∂r

∂y
+ r sin(θ) cos(θ)

∂θ

∂y

0 = cos2(θ)
∂r

∂y
− r sin(θ) cos(θ)

∂θ

∂y

0 = sin2(θ)
∂r

∂x
+ r sin(θ) cos(θ)

∂θ

∂x

From here it is an easy exercise to check that

∂r

∂x
= cos(θ) (6)

∂r

∂y
= sin(θ) (7)

∂θ

∂x
= − sin(θ)

r
(8)

∂θ

∂y
=

cos(θ)

r
(9)

Now, by the chain rule we have

∂

∂x
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ
,

∂

∂y
= sin(θ)

∂

∂r
+

cos(θ)

r

∂

∂θ
.

So (calculations as exercise) the Laplacian in polar coordinates is:

∆ =

(
cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ

)2

+

(
sin(θ)

∂

∂r
+

cos(θ)

r

∂

∂θ

)2

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (10)

1.1.1 Cylindrical coordinates

In 3d one sometimes encounters problems which have a cylindrical symmetry. For such a problem it is usually
prudent to change to cylindrical coordinates:

x = r cos(θ) (11)

y = r sin(θ) (12)

z = z (13)

Since the z-coordinate remains unchanged, and (x, y) → (r, θ) as above in Section 1.1, the Laplacian in
cylindrical coordinates is simply

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (14)

1.2 Spherical coordinates

Now suppose that our problem exhibits a 3d spherical symmetry. Then a natural choice of coordinates are
the spherical coordinates

x = ρ sin(θ) cos(φ) (15)

y = ρ sin(θ) sin(φ) (16)

z = ρ cos(θ) (17)
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Geometrically:

• ρ measures the radial distance from the origin, 0 ≤ ρ <∞.

• φ measures the longitude, 0 ≤ φ ≤ 2π.

• θ measures the latitude, 0 ≤ θ ≤ π.

Again, up to choosing a branch of arctan, these may be inverted by the formulae:

ρ =
√
x2 + y2 + z2 (18)

θ = arctan

(√
x2 + y2

z

)
(19)

φ = arctan
(y
x

)
(20)

These look much less friendly than before, and while we could crunch through the calculation it would be
messy (and not a great use of class time). Instead, let’s be a little creative.

The first observation is that spherical coordinates are orthogonal :

• For fixed φ, θ we get rays from the origin, which are orthogonal to the spheres we get for each value of
r.

• For fixed r, the coordinates φ and θ give us meridians (lines of longitude) and θ and parallels (lines of
latitude) respectively. These are also orthogonal.

What practical application does this observation have? Suppose we want to calculate the length of an
infinitesimal line segment ds. In (orthogonal) cartesian coordinates, this is given by

ds2 = dx2 + dy2 + dz2.

If we instead express this in terms of spherical coordinates then – since they are orthogonal – we will not
pick up any cross terms:

ds2 = Adρ2 +Bdθ2 + Cdφ2

It only remains to determine A,B,C – we will not do this in class (though feel free to come talk with me
about it during office hours) – to obtain the results:

ds2 = dρ2 + ρ2dθ2 + ρ2 sin2(θ)dφ2. (21)

The volume element that we integrate against is therefore1

dvol = dxdydz = ρ2 sin(θ)dρdθdφ. (22)

Next, we want to understand how the gradient of a function, ∇u, is expressed in different coordinate systems.
Let d~s = (dx, dy, dz); then ∇u in cartesian coordinates is determined by the property that

du = ∇u · d~s.

The LHS is invariant under changes in coordinates. So, suppose that we change coordinates via some
invertible matrix Q,

d~s′ = Qd~s.

1As an exercise, you should be able to calculate the prefactor here as the absolute value of the Jacobian for the change from
cartesian to spherical coordinates.
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Write u′ for u expressed in the new coordinate system. Then

du = ∇u · d~s = ∇u′ · d~s′ = ∇u′ · (Qd~s) = (QT∇u′) · d~s,

where QT is the transpose of Q, and so
∇u′ = (QT )−1∇u.

So in spherical coordinates we have that

∇u =

(
∂u

∂ρ
,

1

ρ

∂u

∂θ
,

1

ρ sin(θ)

∂u

∂φ

)
. (23)

Now the real fun begins. Let Ω be a bounded domain in R3 with boundary ∂Ω, and let v be an appropriately
differentiable function on Ω that vanishes near ∂Ω. Consider the integral identity∫∫∫

Ω

∆uvdvol = −
∫∫∫

Ω

∇u · ∇vdvol (24)

(e.g. express in Cartesian coordinates and use integration by parts). Expressing both sides of this equality
in terms of spherical coordinates, and integrating by parts using the spherical coordinates, we get∫∫∫

Ω

∆uvρ2 sin(θ)dρdθdφ = −
∫∫∫

Ω

(
uρvρ+

1

ρ2
uθvθ +

1

ρ2 sin2(θ)
uφvφ

)
ρ2 sin(θ)dρdθdφ

=

∫∫∫
Ω

((
ρ2 sin(θ)uρ

)
ρ

+ (sin(θ)uθ)θ +

(
1

sin(θ)
uφ

)
φ

)
vdρdθdφ.

But now we use a trick (that we have seen before): this integral identity holds on any domain Ω and for any
appropriate function v.2 So the terms in the integrand multiplying v must be equal:

ρ2 sin(θ)∆u =
(
ρ2 sin(θ)uρ

)
ρ

+ (sin(θ)uθ)θ +

(
1

sin(θ)
uφ

)
φ

,

so that

∆u =
1

ρ2 sin(θ)

((
ρ2 sin(θ)uρ

)
ρ

+ (sin(θ)uθ)θ +

(
1

sin(θ)
uφ

)
φ

)
.

As a short exercise, expand this out to obtain the final result:

∆ =
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2

(
∂2

∂θ2
+ cot(θ)

∂

∂θ

)
+

1

ρ2 sin2(θ)

∂2

∂φ2
. (25)

1.2.1 Laplace operator on the sphere

Now, suppose that we want to study the Laplace operator not on a domain in R2, but on a sphere. E.g. we
might be interested in vibrations of a spherical membrane, in which case we would study the wave equation
on the sphere. We can get an equation for this from the work we have already done.

For concreteness let’s work with the unit sphere (other radii R will differ by a scaling factor of 1
R2 ). Then

in (25) we can set ρ ≡ 1, and ∂
∂ρ ≡ 0 (since the radial coordinate is no longer able to change), to obtain the

spherical Laplacian

∆S2 ≡ Λ :=
∂2

∂θ2
+ cot(θ)

∂

∂θ
+

1

sin2(θ)

∂2

∂φ2
(26)

2Eliding questions of in what sense the domain and function should be “nice”, which are not important to the result.
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1.3 Conformal coordinates on R2

Finally, let’s briefly mention two more coordinate systems: elliptic and parabolic coordinates on R2. These
coordinate systems have a particularly nice property: the new coordinates σ, τ are related to cartesian
coordinates by a conformal transformation, which means that

ds2 = f(σ, τ)(dσ2 + dτ2). (27)

From the arguments given in Section 1.2 it is a quick exercise to check that this means that in these coordinates
the Laplacian is given by

∆ =
1

f(σ, τ)

(
∂2

∂σ2
+

∂2

∂τ2

)
. (28)

1.3.1 Elliptic coordinates

Elliptic coordinates on R2 are defined by

x = c cosh(σ) cos(τ) (29)

y = c sinh(σ) sin(τ) (30)

Lines of constant σ yield ellipses, and lines of constant τ yield hyperbolae, both with foci at (−c, 0) and
(c, 0). The length of an infinitesimal segment is given by

ds2 = c2
(
sinh2(σ) + sin2(τ)

) (
dσ2 + dτ2

)
(31)

and so

∆ =
∂2
σ + ∂2

τ

c2(sinh2(σ) + sin2(τ))
. (32)

1.3.2 Parabolic coordinates

Parabolic coordinates on R2 are defined by

x = στ (33)

y =
1

2
(σ2 − τ2) (34)

Lines of constant σ and lines of constant τ both yield confocal parabolae. The length of an infinitesimal
segment is given by

ds2 =
(
σ2 + τ2

) (
dσ2 + dτ2

)
(35)

and so

∆ =
∂2
σ + ∂2

τ

σ2 + τ2
. (36)

References

[IvrXX] Victor Ivrii. Partial Differential Equations. online textbook for APM346, 20XX.

[Str08] Walter A. Strauss. Partial differential equations. John Wiley & Sons, Ltd., Chichester, second
edition, 2008. An introduction.


	The Laplace operator in different coordinates
	Polar coordinates
	Cylindrical coordinates

	Spherical coordinates
	Laplace operator on the sphere

	Conformal coordinates on R2
	Elliptic coordinates
	Parabolic coordinates



