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Richard Derryberry

February 14, 2019

We continue our study of Fourier series. References being used: [IvrXX, §4.5] (§4.5) and [Str08, Ch.5].

1 Even/odd functions and periodic extensions

Last lecture we saw that every function f(x) on an interval I of length 2l could be decomposed into a Fourier
series:

f(x) ∼ 1

2
a0 +

∞∑
n=1

(
an cos

(πnx
l

)
+ bn sin

(πnx
l

))
(1)

an =
1

l

∫
I

f(x) cos
(nπx

l

)
dx (2)

bn =
1

l

∫
I

f(x) sin
(nπx

l

)
dx (3)∫

I

|f(x)|2dx =
l

2
|a0|2 +

∞∑
n=1

l
(
|an|2 + |bn|2

)
(4)

We did not explicitly use this terminology last lecture, but one says that the system of functions{
1

2
, cos

(nπx
l

)
, sin

(nπx
l

)}
n=1,2,...

(5)

forms a complete orthogonal system on the interval I.

Today we will consider some other naturally arising orthogonal systems.

1.1 Fourier series for even and odd functions

First consider the following Lemma, which we implicitly used last lecture.

Lemma 1.1. Let I = [−l, l]. Then

(a) f(x) is even iff bn = 0 for all n

(b) f(x) is odd iff an = 0 for all n

Proof. Follows from (1) the fact that cos/sin is an even/odd function, and (2) that we are integrating over a
symmetric interval.

1

http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter4/S4.5.html
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1.2 Cosine Fourier series

Consider a function f(x) on the interval [0, l]. Take the even extension of f to a function on [−l, l],

F (x) := f(|x|), −l ≤ x ≤ l. (6)

By (1) and Lemma 1.1, F has a Fourier series

F (x) ∼ 1

2
a0 +

∞∑
n=1

an cos
(nπx

l

)
, (7)

where the coefficients are calculated as in (2). Restricting to the interval [0, l], this provides a decomposition
of f(x) as a cosine Fourier series; using the fact that we took an even extension, the coefficients an may be
calculated as

an =
2

l

∫ l

0

f(x) cos
(nπx

l

)
dx. (8)

Parseval’s equality becomes ∫ l

0

|f(x)|2dx =
l

4
|a0|2 +

∞∑
n=1

l

2
|an|2. (9)

Upshot:

• The resulting Fourier series is even and 2l-periodic.

• For “nice” f (see last lecture)1 it provides an (even, 2l-periodic) extension of our original function.

• Taking an even and periodic extension does not introduce new discontinuities into our function.

• This is a decomposition of f with respect to the the orthogonal system{
1

2
, cos

(nπx
l

)}
n=1,2,...

. (10)

Example 1. Let’s determine the cosine Fourier series for f(x) = x, on the interval [0, 1]. For n > 0 the
coefficients are

an = 2

∫ 1

0

x cos(nπx)dx =
2

n2π2
((−1)n − 1)

which vanish for even n and equal − 4
n2π2 for odd n. For n = 0 we have

a0 = 2

∫ 1

0

xdx = 1.

So we have

x ∼ 1

2
− 4

π2

∞∑
n=0

cos((2n+ 1)πx)

(2n+ 1)2
.

See Figure 1 for the periodic extension to the entire line.

1E.g. if the function satisfies the Dirichlet conditions.
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Figure 1: Cosine Fourier series extension of f(x) = x.

1.3 Sine Fourier series

Consider a function f(x) on the interval [0, l]. Take the odd extension of f to a function on [−l, l],

F (±|x|) := ±f(|x|), −l ≤ x ≤ l. (11)

By (1) and Lemma 1.1, F has a Fourier series

F (x) ∼
∞∑
n=1

bn sin
(nπx

l

)
, (12)

where the coefficients are calculated as in (3). Restricting to the interval [0, l], this provides a decomposition
of f(x) as a sine Fourier series; using the fact that we took an odd extension, the coefficients bn may be
calculated as

bn =
2

l

∫ l

0

f(x) sin
(nπx

l

)
dx. (13)

Parseval’s equality becomes ∫ l

0

|f(x)|2dx =
∞∑
n=1

l

2
|bn|2. (14)

Upshot:

• The resulting Fourier series is odd and 2l-periodic.

• For “nice” f it provides an (odd, 2l-periodic) extension of our original function.

• Taking an even and periodic extension does not introduce new discontinuities into our function if and
only if f(0) = f(l) = 0.

• This is a decomposition of f with respect to the the orthogonal system{
sin
(nπx

l

)}
n=1,2,...

. (15)



APM 346 Lecture 12 4

Example 2. Let’s determine the sine Fourier series for f(x) = x, on the interval [0, 1]. The coefficients are

bn = 2

∫ 1

0

x sin(nπx)dx = −2 cos(nπ)

nπ
= (−1)n+1 2

nπ
.

So we have

x ∼ 2

π

∞∑
n=1

(−1)n+1

n
sin(nπx).

See Figure 2 for the periodic extension to the entire line.
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Figure 2: Sine Fourier series extension of f(x) = x.

1.4 Half-integer Sine Fourier series

Consider a function f(x) on the interval [0, l]. Now: extend it as an even function around the endpoint x = l
to obtain a function on [0, 2l] that satisfies

f(x) = f(2l − x) for x ∈ [l, 2l].

Next, make an odd continuation about x = 0, to obtain a function on [−2l, 2l]. This function has a Fourier
series given by

f(x) ∼
∞∑
n=1

b′n sin
(nπx

2l

)
, (16)

where

b′n =
1

2l

∫ 2l

−2l
f(x) sin

(nπx
2l

)
dx (17)

Now, using the periodicity of sin, we have that

f(2l − x) =

∞∑
n=1

b′n sin
(nπx

2l

)
(−1)n+1,

and so since our original continuation around x = l was even we have that all of the even index coefficients
b2m must vanish, leaving us with

f(x) ∼
∞∑
n=0

bn sin

(
(2n+ 1)πx

2l

)
(18)
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where bn = b′2n+1. These coefficients can be calculated as

bn =
2

l

∫ l

0

f(x) sin

(
(2n+ 1)πx

2l

)
dx, n ≥ 0.

Parseval’s equality becomes ∫ l

0

|f(x)|2dx =

∞∑
n=1

l

2
|bn|2. (19)

Upshot:

• The resulting Fourier series is odd and 4l-periodic.

• For “nice” f it provides an (odd, 4l-periodic) extension of our original function.

• Taking this even/odd extension does not introduce new discontinuities into our function if and only if
f(0) = 0.

• This is a decomposition of f with respect to the the orthogonal system{
sin

(
(2n+ 1)πx

2l

)}
n=0,1,2,...

. (20)

Example 3. Let’s determine the half-integer sine Fourier series for f(x) = x, on the interval [0, 1]. The
coefficients are

bn = 2

∫ 1

0

x sin

(
2n+ 1

2
πx

)
dx =

8 cos(nπ)

(2n+ 1)2π2
= 8

(−1)n

(2n+ 1)2π2

So we have

x ∼ 8

π2

∞∑
n=0

(−1)n

(2n+ 1)2
sin

(
(2n+ 1)πx

2

)
.

See Figure 3 for the periodic extension to the entire line.
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Figure 3: Half-integral sine Fourier series extension of f(x) = x.
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2 Complex Fourier series

Recall that we can write sine and cosine in terms of complex exponentials as

cos
(nπx

l

)
=
e
nπi
l x + e−

nπi
l x

2
, (21)

sin
(nπx

l

)
=
e
nπi
l x − e−nπil x

2i
. (22)

Using this decomposition we can perform a change of basis to rewrite the Fourier series for f(x) (1) as

f(x) ∼
∞∑

n=−∞
cne

nπi
l x (23)

where

c0 =
1

2
a0, (24)

cn =
1

2
(an − ibn), n = 1, 2, . . . (25)

cn =
1

2
(a−n + ib−n), n = −1,−2, . . . (26)

or generally:

cn =
1

2l

∫
I

f(x)e−
nπi
l xdx. (27)

Parseval’s equality becomes ∫
I

|f(x)|2dx = 2l

∞∑
n=−∞

|cn|2. (28)

This is a decomposition of f with respect to the the orthogonal system{
Xn(x) := e

nπi
l x
}
n=...,−2,−1,0,1,2,...

. (29)

Exercise: Show that ∫
I

Xn(x)Xm(x)dx = 2lδmn.

Remark 2.1. Note that for complex Fourier series, we require that both

∞∑
n=0

cnXn(x) and

−∞∑
n=0

cnXn(x)

converge, which is a stronger requirement than convergence of a trigonometric Fourier series. E.g. if f is a
piecewise differentiable function, then the complex Fourier series for f converges only at points where f is
continuous, not at discontinuities.

3 Integration and differentition of Fourier series

Finally, let’s consider the following problem: suppose that we have a function f(x) defined on the interval
[−l, l], with corresponding Fourier series

f(x) ∼ 1

2
a0 +

∞∑
n=1

(
an cos

(πnx
l

)
+ bn sin

(πnx
l

))
.
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When can we obtain the Fourier series for the functions∫ x

x0

f(y)dy and f ′(x)

via term-by-term integration or differentiation of the Fourier series for f(x)?

It turns out that term-by-term integration of a Fourier series is permissible. You should think that this is
(roughly) because the series obtained via term-by-term integration has better convergence properties than
the original series – in the nth term integration brings down a factor of 1

n , improving the convergence.

Example 4. We’ve seen previously that the Fourier series for the function f(x) = x on the interval [−l, l] is
given by

x ∼ 2l

π

∞∑
n=1

(−1)n+1

n
sin
(nπx

l

)
. (30)

So to find the Fourier series for x2 on the interval [−l, l], we may integrate

x2 = 2

∫ x

0

tdt

∼ 2

∫ x

0

(
2l

π

∞∑
n=1

(−1)n+1

n
sin

(
nπt

l

))
dt

=
4l

π

∞∑
n=1

(−1)n+1

n

∫ x

0

sin

(
nπt

l

)
dt

=
4l2

π2

∞∑
n=1

(−1)n

n2

(
cos
(nπx

l

)
− 1
)

=
4l2

π2

∞∑
n=1

(−1)n+1

n2
+

4l2

π2

∞∑
n=1

(−1)n

n2
cos
(nπx

l

)
(31)

To evaluate the first term, we can calculate the a0 Fourier term directly:

a0 =
1

l

∫ l

−l
x2dx =

1

l

[
x3

3

]l
−l

=
1

l

(
l3

3
+
l3

3

)
=

2

3
l2

So using x2 ∼ 1
2a0 + · · · we find:

x2 ∼ 1

3
l2 +

4l2

π2

∞∑
n=1

(−1)n

n2
cos
(nπx

l

)
(32)

Now, let’s consider the more subtle question of term-by-term differentiation. First, let’s assume that f(x) is
once differentiable, so that f ′(x) exists and is continuous. Let the Fourier coefficients of f(x) be denoted an,
bn. Then write the Fourier series for f ′(x) as

f ′(x) ∼ 1

2
A0 +

∞∑
n=1

(
An cos

(nπx
l

)
+Bn sin

(nπx
l

))
(33)
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We can calculate these Fourier coefficients:

A0 =
1

l

∫ l

−l
f ′(x)dx =

f(l)− f(−l)
l

An =
1

l

∫ l

−l
f ′(x) cos

(nπx
l

)
dx =

1

l

[
f(x) cos

(nπx
l

)]l
−l

+
nπ

l2

∫ l

−l
f(x) sin

(nπx
l

)
dx

=
f(l)− f(−l)

l
cos(nπ) +

nπ

l
bn

Bn =
1

l

∫ l

−l
f ′(x) sin

(nπx
l

)
dx =

1

l

[
f(x) sin

(nπx
l

)]l
−l
− nπ

l2

∫ l

−l
f(x) cos

(nπx
l

)
dx = −nπ

l
an

From this we see: If f(x) is once (continuously) differentiable on [−l, l], the Fourier series for f ′(x) may be
obtained from the Fourier series of f(x) via term-by-term differentiation if and only if f(l) = f(−l).
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