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This week we return to the wave equation, only now we wish to look for solutions on a finite interval. We
will tackle this problem by introducing the method of separation of variables and Fourier series.

References being used: [IvrXX, §4.1-2] §4.1, §4.2; [Str08, Ch.4].

1 The wave equation on a finite interval

To begin with, let’s consider the IBVP for the (homogeneous) 1d-wave equation on (0, l) with homogeneous
Dirichlet boundary conditions:

utt − c2uxx = 0, 0 < x < l, PDE
u(0, t) = 0, BC1
u(l, t) = 0, BC2
u(x, 0) = g(x), IC1
ut(x, 0) = h(x). IC2

(1)

1.1 Separation of variables

To begin with, let us not worry about the initial conditions, and just consider the PDE and BCs from (1).
We will attempt to tackle this problem via the method of separation of variables. This method proceeds as
follows:

(1) We search for separated solutions U to our problem which factor into functions of each individual variable,
i.e. which are of the form U(x1, . . . , xN ) = f1(x1) · · · fN (xN ).

(2) We use linearity of our differential equation to construct more general solutions as (infinite) sums of the
special solutions.

(3) We prove that in fact every solution may be written as such an (infinite) sum.

To implement this, let us search for solutions to the BVP component of (1) of the form

u(x, t) = X(x)T (t), (2)

where X(x) is a function on (0, l) and T (t) is a function on (−∞,∞). We want to find non-trivial solutions
– solutions where u is not identically zero – which implies that neither of X(x) or T (t) may be identically
zero.

Substituting in (2) to the PDE and BC parts of (1) we find

X(x)T ′′(t) = c2X ′′(x)T (t), (3)

X(0)T (t) = X(l)T (t) = 0, (4)

1
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http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter4/S4.2.html
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and so dividing through by X(x)T (t) and T (t) respectively, we obtain

T ′′(t)

T (t)
= c2

X ′′(x)

X(x)
, (5)

X(0) = X(l) = 0. (6)

But now we make the crucial observation:

• The LHS of (5) is purely a function of t – it has no dependence on x.

• The RHS of (5) is purely a function of x – it has no dependence on t.

• Therefore, as these expressions are equal, they must depend on neither x nor t – and so they must be
constant!

Using this assumption we may rewrite (5) as

X ′′(x)

X(x)
= −λ, (7)

T ′′(t)

T (t)
= −c2λ, (8)

and so we have turned our PDE problem into a system of ODEs:

X ′′ + λX = 0, (9)

X(0) = X(l) = 0, (10)

T ′′ + c2λT = 0. (11)

1.2 The eigenvalue problem

Let us consider the ODE BVP (9)-(10). We wish to find a nontrivial (not identically zero) solution X(x).
This is an example of an eigenvalue problem.

Definition 1.1. A solution X(x) to (9)-(10) is called an eigenfunction with eigenvalue λ.

Where is this terminology coming from? Cast your mind back to linear algebra: suppose that A is an n× n
matrix, and ~v is an n-component vector. Then we call ~v an eigenvector of A with eigenvalue µ if A(~v) = µ~v.

Compare this with our situation: we have a linear (differential) operator L := − d2

dx2 , which sends a function
of x to minus its second derivative. We can add functions, and multiply them by scalars1 – so functions form
a vector space. So an eigenvector for the linear operator L with eigenvalue λ would be a function X which
satisfies

L[X] = λX. (12)

But this is exactly (9)! So our eigenvalue problem really is just a familiar problem from linear algebra –
albeit appearing in a potentially unfamiliar context.

Proposition 1.1. The eigenvalues and eigenfunctions for (9)-(10) are given by

λn =
π2n2

l2
, n = 1, 2, . . . , (13)

Xn(x) = sin
(πnx

l

)
. (14)

1There is of course the question of exactly what types of functions we wish to consider. Any “reasonable” choice for us will
furnish a vector space.



APM 346 Lecture 9 3

Proof. Let’s consider two different approaches to solving this:

Approach 1: Extreme generality. Recall that to solve a general 2nd order linear ODE with constant
coefficients, one makes the educated guess (based on the form of the ODE) that solutions will be of the form
ekx for some constants k. Plugging this into our ODE, we find that (k2 + λ)ekx = 0, which can only be
satisfied if the the characteristic equation

k2 + λ = 0 (15)

is satisfied, i.e. k± = ±
√
−λ. So, provided λ 6= 0, the most general solution to our ODE will be

X(x) = Ae
√
−λx +Be−

√
−λx. (16)

Applying our boundary conditions X(0) = X(l) = 0 gives the system of linear equations{
A+B = 0,

Ae
√
−λl +Be−

√
−λl = 0,

(17)

and a non-trivial solution (A,B) 6= (0, 0) to this exists if and only if its determinant is zero. We calculate

det

(
1 1

e
√
−λl e−

√
−λl

)
= e−

√
−λl − e

√
−λl = 0

iff

e2
√
−λl = 1

iff

2
√
−λl = 2πin, for n = 1, 2, . . .

We exclude n = 0 since that would lead to the excluded λ = 0 case, and we exclude n < 0 since those values
give the same eigenvalues and eigenfunctions as n > 0. So, we find that

λn =
π2n2

l2
,

(kn)± = ±nπi
l
.

Further, from (17) we see that B = −A, and so substituting in the derived formula for kn we obtain

X(x) = 2Ai sin
(πnx

l

)
as desired.

It remains to treat the λ = 0 case separately. Here, X(x) = A + Bx, so applying our BCs we obtain the
linear system {

A = 0,
A+Bl = 0,

which leads only to the trivial solution A = B = 0. So λ = 0 is not an eigenvalue.

Approach 2: Case analysis. Alternately, we can make use of the fact (from a previous calculus or ODEs
class) that we already know the solutions to (9) – we are looking for functions which are proportional to their
second derivatives, and depending on the sign of λ, they will either be the trigonometric functions sin and
cos, of the hyperbolic-trigonometric functions sinh and cosh. Let us proceed case-by-case.

• λ = 0: we have already dealt with.
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• λ < 0: Set λ = −ω2, ω > 0, so we are solving X ′′ − ω2X = 0. This has general solution

X(x) = A sinh(ωx) +B cosh(ωx).

Applying X(0) = 0 now gives B = 0, and applying X(l) = 0 gives

A sinh(ωl) = 0

which implies A = 0 (since sinh vanishes only at the origin). So there are no nontrivial solutions for
λ < 0.

• λ > 0: Set λ = ω2, ω > 0, so we are solving X ′′ + ω2X = 0. This has general solution

X(x) = A sin(ωx) +B cos(ωx).

Applying X(0) = 0 again gives B = 0, and applying X(l) = 0 gives

A sin (ωl) = 0

which implies that ωl = nπ for n = 1, 2, . . .. Then

λn = ω2
n =

n2π2

l2

and
Xn(x) = sin

(nπx
l

)
.

1.3 Standing wave solutions

Having now found the eigenvalues λn =
(
nπ
l

)2
, we can substitute them in to (11) to obtain the ODE

T ′′ +
(cnπ

l

)2
T = 0, (18)

which has general solution (same as for X)

Tn(t) = An cos
(cnπ

l
t
)

+Bn sin
(cnπ

l
t
)
. (19)

Putting our solutions together, we find the special solutions

un(x, t) =
(
An cos

(cnπ
l
t
)

+Bn sin
(cnπ

l
t
))

︸ ︷︷ ︸
=Tn(t)

· sin
(nπ
l
x
)

︸ ︷︷ ︸
Xn(x)

, n = 1, 2, . . . (20)

which represents a standing wave (which we have seen before).

1.4 General solutions

Since the wave equation is linear, a linear combination of solutions is also a solution. Hence the function

u(x, t) =

∞∑
n=1

(
An cos

(cnπ
l
t
)

+Bn sin
(cnπ

l
t
))
· sin

(nπ
l
x
)

(21)
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is also a solution to the wave equation.2

Question: Can all solutions to (1) be written in the form (21)? In other words, have we found all possible
solutions?

The answer to this question is yes, although we will not completely justify this claim in this course. We can,
however, consider what happens when we substitute the initial conditions of (1) into (21):

g(x) =

∞∑
n=1

An sin
(nπ
l
x
)
, (22)

h(x) =

∞∑
n=1

cnπ

l
Bn sin

(nπ
l
x
)
. (23)

This gives us a clue that, hopefully, one might be able to recover the coefficients An and Bn from the initial
conditions g(x) and h(x) – specifically, that we might be able to extract them as the coefficients in the Fourier
series representation of these functions.

2 Boundary conditions for the wave equation

In Section 1 we considered the wave equation on a finite interval with Dirichlet BCs on each end (1). This
led to the eigenvalue problem

X ′′ + λX = 0, (24)

X(0) = X(l) = 0, (25)

the solutions of which were given by

λn =
(nπ
l

)2
, n = 1, 2, . . . , (26)

Xn(x) = sin
(πnx

l

)
. (27)

Let’s now consider other possible BCs for the wave equation on a finite interval.

Remark 2.1. Note that in all the examples that follow the ODE that we need to solve stays the same – it is
always (9). It is only the BCs that will change.

2.1 Neumann-Neumann BCs

Suppose instead that we considered Neumann boundary conditions on both ends of the interval (we allow
the strings to move freely up and down at the ends of the interval). This translates to the BCs

X ′(0) = X ′(l) = 0. (28)

A similar analysis to that performed in Lecture 9 yields the eigenvalues and eigenfunctions

λn =
(nπ
l

)2
, n = 0, 1, 2, . . . , (29)

Xn(x) = cos
(πnx

l

)
. (30)

Note that in constrast to the Dirichlet-Dirichlet eigenvalue problem, now the n = 0 case gives a nontrivial
solution.

2Sidestepping – for the moment – questions of convergence.
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2.2 Dirichlet-Neumann BCs

Suppose now that we impose Dirichlet BCs at x = 0, but Neumann BCs at x = l (we fix one end of the
string in place, and allow the other end to move freely). This translates to the BCs

X(0) = X ′(l) = 0. (31)

Suppose that λ > 0 – we leave as an exercise the remaining cases – and set λ = ω2, ω > 0. Then (9) has
general solution

X(x) = A sin(ωx) +B cos(ωx),

and imposing (31) yields B = 0 and
Aω cos(ωl) = 0.

This has nontrivial solutions given by

ωn =
(2n+ 1)π

2l
, n = 0, 1, 2, . . . , (32)

so the corresponding eigenvalues and eigenfunctions are

λn =

(
(2n+ 1)π

2l

)2

, n = 0, 1, 2, . . . , (33)

Xn(x) = sin

(
(2n+ 1)π

2l
x

)
. (34)

Reversing which end has the Dirichlet and with end has the Neumann BC would result in the same eigenvalues,
and the replacement sin→ cos in (34).

2.3 Periodic BCs

Suppose now we apply periodic BCs (you can think that we are now solving the wave equation on a circle
rather than a finite interval – our string is now a loop):

X(0) = X(l), X ′(0) = X ′(l). (35)

We can automatically rule out the hyperbolic solutions to (9), as well as X(x) = x, since they are not
periodic. The constant function is periodic, however, so we obtain

λ0 = 0, X0 = 1. (36)

For λ > 0, set λ = ω2, ω > 0, with solution

X(x) = Aeiωx +Be−iωx,

and derivative
X ′(x) = iωAeiωx − iωBe−iωx.

Imposing periodic BCs gives

A+B = Aeiωl +Be−iωl

A−B = Aeiωl −Be−iωl

So,

2A = 2Aeiωl

2B = 2Be−iωl
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both conditions which imply that ω = 2πn
l for some integer n. There are no further constraints to impose,

and so we see that

λn =

(
2πn

l

)2

, n = . . . ,−2,−1, 0, 1, 2, . . . , (37)

Xn(x) = exp

(
2πin

l
x

)
(38)

Remark 2.2. The eigenfunctions (38) are complex valued – it is reasonable to ask if we wind up with fewer
eigenfunctions if we require our solutions to be real.

In fact we do not: for n > 0 we may take the linear combinations

Xn +X−n
2

= cos

(
2πn

l
x

)
Xn −X−n

2i
= sin

(
2πn

l
x

)
so that the two independent solutions X±n yield the two independent solutions cos

(
2πn
l x
)

and sin
(
2πn
l x
)
.

2.4 Quasi-Periodic BCs

Now let’s consider the case of quasi -periodic boundary conditions – now the solution is not quite periodic,
instead differing from the periodic case by some fixed multiplicative factor. For instance, suppose we take as
our BCs

X(0) = −X(l), X ′(0) = −X ′(l). (39)

In what follows let’s take the length of our interval to be 1, i.e. 0 < x < 1. It is not difficult to show that
λ ≤ 0 still leads only to the trivial solution, so consider λ = ω2, ω > 0. Then the generals solution to (9) is

X(x) = Aeiωx +Be−iωx

X ′(x) = iωAeiωx − iωBe−iωx

so imposing (39) yields the system of linear equations

A+B = −Aeiω −Be−iω

A−B = −Aeiω +Be−iω

which can be manipulated to give

2A = −2Aeiω

2B = −2Be−iω

We can therefore achieve nontrivial solutions precisely when eiω = −1, i.e. for

ωn = (2n+ 1)π, n ∈ Z.

You can check that eiωnx = e−iω−n−1x, so that in fact the ωn for n < 0 are redundant. So, we have that our
eigenvalues and eigenfunctions are given by

λn = (2n+ 1)2π2, (40)

X±n (x) = e±i(2n+1)πx (41)

where n = 0, 1, 2, 3, . . ..

Remark 2.3. Just as in the periodic case, by taking sums and differences of the X±n we can see that a
collection of real-valued eigenfunctions is given by

Cn(x) = cos((2n+ 1)πx),

Sn(x) = sin((2n+ 1)πx).



APM 346 Lecture 9 8

2.5 Robin BCs

In all the above examples we found explicit formulae for our eigenvalues. Let’s now consider a situation where
such explicit formulae do not necessarily exist, but we will still be able to obtain quite a lot of information:
the case of Robin boundary conditions,

X ′(0) = αX(0), X ′(1) = −βX(1). (42)

Again we are working on the interval 0 < x < 1, so as not to be distracted by factors of l.

2.5.1 One-sided Robin BC

Let’s begin by considering a slightly simpler problem: fix the end of the string at x = 0 (impose a homogeneous
Dirichlet BC), and impose a Robin BC at x = 1:

X(0) = 0, X ′(1) = −βX(1). (43)

We will assume that β 6= 0 (otherwise this is the Dirichlet-Neumann condition we have already studied).

We repeat much of the above: letting λ = ω2, ω > 0, we have a general solution

X(x) = A sin(ωx) +B cos(ωx),

and the Dirichlet condition X(0) = 0 implies B = 0. So we have

X ′(x) = ωA cos(ωx),

and applying the Robin condition at x = 1 gives

Aω cos(ω) = −Aβ sin(ω).

This has a non-trivial solution for ω satisfying

ω = −β tan(ω). (44)

We can’t solve this equation exactly. However: by plotting both sides of (44) and looking for intersections
(Figures 1, 2, 3, 4) we can see that there is one solution ωn in each interval

2n− 1

2
π < ω <

2n+ 1

2
π,

with the possible exception of n = 0. A solution will exist for n = 0 if and only if

0 <
d

dω
(−β tan(ω)) |ω=0 < 1, (45)

which occurs precisely when 0 > β > −1. (Exercise: Why is (45) the correct condition to consider?)

Upshot: we have found that there is a string of eigenvalues ωn, with n ≥ 0 or n > 0 depending on the value
of β, with corresponding eigenfunctions

Xn(x) = sin(ωnx). (46)

Okay – so we’re done, right? Not quite – remember that, e.g. for Neumann-Neumann BCs (Section 2.1), the
zero eigenvalue could occur.

So, suppose that λ = 0. Then
X(x) = Ax+B
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Figure 1: Plotting (44) for β < −1.
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Figure 2: Plotting (44) for β = −1.
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Figure 3: Plotting (44) for 0 > β > −1.
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Figure 4: Plotting (44) for β > 0.
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is the general solution to (9). The Dirichlet BC implies that B = 0, so that

X ′(x) = A.

Then the Robin condition reads
A = −βA,

and so if β = −1 we have to supplement the eigenfunctions (46) with the linear eigenfunction

Xlin(x) = x, (47)

with eigenvalue zero.

Okay – so now we’re done, right?

Right?

The answer (as you might expect from such a leading question) is still no. Unlike in previous examples, here
we are going to have to carefully examine the possibility that a negative eigenvalue occurs.

So, let λ = −ω2 < 0, ω > 0. The general solution to (9) is given by

X(x) = A sinh(ωx) +B cosh(ωx),

and the Dirichlet BC implies B = 0. So,

X ′(x) = Aω cosh(ωx)

and imposing the Robin BC at x = 1 yields

Aω cosh(ω) = −βA sinh(ω).

This has a non-trivial solution for ω satisfying

ω = −β tanh(ω). (48)

Since we require ω > 0 there can be no solution to this equation for β > 0. In fact a positive solution to (48)
will exist if and only if

d

dω
(−β tanh(ω)) |ω=0 > 1; (49)

see Figures 5, 6, 7. (Exercise: Why is (49) the correct condition to consider?)

So: if β < −1, there is a single negative eigenvalue λ− = −ω2
−, where ω− is the unique positive solution to

(49), with corresponding eigenfunction

X−(x) = sinh(ω−x). (50)

Summary: The eigenvalues and eigenfunctions for the BCs (43) are given by

• If β > 0:

– The eigenvalues λn = ω2
n, ωn solving (45), for n > 0; trigonometric eigenfunctions sin(ωnx).

• If 0 > β > −1:

– The eigenvalues λn = ω2
n, ωn solving (45), for n ≥ 0; trigonometric eigenfunctions sin(ωnx).

• If β = −1:
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Figure 5: Plotting (48) for β < −1.
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Figure 6: Plotting (48) for β = −1.
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Figure 7: Plotting (48) for 0 > β > −1.

– The eigenvalues λn = ω2
n, ωn solving (45), for n > 0; trigonometric eigenfunctions sin(ωnx).

– The zero eigenvalue, with linear eigenfunction x.

• If β < −1:

– The eigenvalues λn = ω2
n, ωn solving (45), for n > 0; trigonometric eigenfunctions sin(ωnx).

– The unique eigenvalue λ− = −ω2
−, ω− solving (49); hyperbolic eigenfunction sinh(ω−x).
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