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This week we continue our study of the 1d wave equation. References are: [IvrXX, §2.4-6] (§2.4, §2.5, §2.6)
and [Str08, Ch.2.1-2,Ch.3.2,Ch.3.4].

1 Solving the wave equation via characteristic coordinates

Recall that to solve the transport equation aut+ bux = 0 we made the observation that any solution must be
constant along certain characteristic curves (which are straight lines in the constant coefficient situation).

This approach may be extended to our analysis of the wave equation as follows. Consider the characteristic
lines

x+ ct = const. and x− ct = const.

which are parametrised by the characteristic coordinates{
ξ = x+ ct
η = x− ct (1)

Proposition 1.1. The LHS of the wave equation may be rewritten as

utt − c2uxx = −4c2uξη (2)

Proof. (1) may be rewritten as
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1

2
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and hence by the chain rule
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and an algebraic manipulation completes the proof.

So, in characteristic coordinates the 1d homogeneous wave equation utt − c2uxx becomes

uξη = 0. (3)

But we already solved this equation back in Lecture 1! The general solution to (3) is given by

u = φ(ξ) + ψ(η) = φ(x+ ct) + ψ(x− ct) (4)

which agrees with the general solution we found in Lecture 4.

1

http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter2/S2.4.html
http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter2/S2.5.html
http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter2/S2.6.html#sect-2.6.2
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Example 1. Consider the Goursat problem
uξη(ξ, η) = 0 ξ > 0, η > 0 PDE
u(ξ, 0) = g(ξ) ξ > 0 C1
u(0, η) = h(η) η > 0 C2
g(0) = h(0) compatibiility condition

(5)

It is an easy exercise to show that the solution to (5) is given by u(ξ, η) = g(ξ) + h(η)− g(0).

1.1 The inhomogeneous wave equation and the d’Alembert formula

Let us now consider an application of characteristic coordinates to the inhomogeneous wave equation. Con-
sider the IVP  utt − c2uxx = f(x, t) PDE

u(x, 0) = g(x) IC1
ut(x, 0) = h(x) IC2

(6)

Let us first solve (6) under the assumption the g ≡ h ≡ 0. Changing coordinates from (x, t) to (ξ, η) and
using Proposition 1.1, we may rewrite the inhomogeneous wave equation as

uξη(ξ, η) = − 1

4c2
f(ξ, η). (7)

Now, we may integrate both sides to obtain

uξ(ξ, η) = − 1

4c2

∫ η

η0

f(ξ, η′)dη′ + uξ(ξ, η0). (8)

Since we may choose the lower limit of integration of η0, let us set it equal to ξ. Then

uξ(ξ, η) = − 1

4c2

∫ η

ξ

f(ξ, η′)dη′ + uξ(ξ, ξ). (9)

Now, the line t = 0 (where we apply our initial conditions) becomes in characteristic coordinates the line
ξ = η. So applying the initial conditions of (6) with g = h = 0 we have that uξ(ξ, ξ) = 0 and so

uξ(ξ, η) = − 1

4c2

∫ η

ξ

f(ξ, η′)dη′ =
1

4c2

∫ ξ

η

f(ξ, η′)dη′. (10)

Integrating (10) with respect to ξ, and using the initial condition u(η, η) = 0 to choose the lower limit of
integration to be ξ0 = η, we obtain

u(ξ, η) =
1

4c2

∫ ξ

η

∫ ξ′

η

f(ξ′, η′)dη′dξ′ (11)

We wish to transform this into a integral over some domain in the (x, t)-plane. Assume that ξ > η (this holds
for t > 0). In the (ξ′, η′)-plane we are integrating over a right angle triangle with (Figure 1):

• Base: the horizontal line η ≤ ξ′ ≤ ξ, at height η′ = η.

• Side: the vertical line η ≤ η′ ≤ ξ, at horizontal position ξ′ = ξ.

• Hypotenuse: the diagonal line η′ = ξ′ with η ≤ η′ ≤ ξ.
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Figure 1: Domain of integration in characteristic coordinates.

Under the linear change of coordinates

ξ′ = x′ + ct′ and η′ = x′ − ct′

this triangle will be transformed into a trangle in the (x′, t′)-plane. In the new triangle, which we will denote
by ∆(x, t) (Figure 2):

• The hypotenuse becomes: the horizontal segment with t′ = 0 and x− ct ≤ x′ ≤ x+ ct.

• The base becomes: the diagonal line x′ = x− c(t− t′) with 0 ≤ t′ ≤ t.

• The side becomes: the diagonal line x′ = x+ c(t− t′) with 0 ≤ t′ ≤ t.

Figure 2: Domain of dependence.



APM 346 Lecture 5 4

So, changing coordinates back from (ξ′, η′) to (x′, t′), and making sure to include the factor coming from the
Jacobian, the solution to (6) with g = h = 0 becomes

u(x, t) =
1

2c

∫∫
∆(x,t)

f(x′, t′)dx′dt′. (12)

Example 2. Back in Lecture 2 we derived that the vibration of a string acted on externally by Earth’s
gravity is described by the equation

utt − c2uxx = −g
where g ' 9.8m/sec

2
(and c depends on the tension and mass density of the string). Suppose that initially

the string is flat and stationary, i.e. u(x, 0) = ut(x, 0) = 0. Then according to (12), the vertical displacement
of the string is given by

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

(−g)dx′dτ

= − g

2c

∫ t

0

((x+ c(t− τ))− (x− c(t− τ))) dτ

= − g

2c

∫ t

0

2c(t− τ)dτ

= g

∫ 0

t

τ ′dτ ′

= −g
2
t2

Is this solution realistic? Why or why not?

1.1.1 Incorporating nonzero initial conditions

Recall the IVP (6)  utt − c2uxx = f(x, t) PDE
u(x, 0) = g(x) IC1
ut(x, 0) = h(x) IC2

only now consider the situation where none of f(x, t), g(x) or h(x) are assumed to be zero.

Since our equation is linear, if we can find solutions uH and uP solving the problems1 (uP )tt − c2(uP )xx = f(x, t) PDE
uP (x, 0) = 0 IC1

(uP )t(x, 0) = 0 IC2
(13)

and  (uH)tt − c2(uH)xx = 0 PDE
(uH)(x, 0) = g(x) IC1

(uH)t(x, 0) = h(x) IC2
(14)

then their sum u(x, t) = uH(x, t) + uP (x, t) will solve the original problem (6).

But now: We determined the solution uH in Lecture 4, and we have determined the solution uP in (12)! So
we can write down the solution to our IVP as

u(x, t) =
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct
h(s)ds︸ ︷︷ ︸

uH(x,t)

+
1

2c

∫∫
∆(x,t)

f(x′, t′)dx′dt′︸ ︷︷ ︸
uP (x,t)

. (15)

1Here H stands for “homogeneous solution” and P stands for “particular solution”.
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Definition 1.1. Equation (15) is called D’Alembert’s Formula.

Example 3. Consider the IVP utt − c2uxx = (θ(t− 1)− θ(t− 2)) cos(x)
u(x, 0) = 0
ut(x, 0) = 0

(16)

where θ is the Heaviside step function

θ(t) :=

{
0, if t < 0
1, if t > 0

(17)

I.e. we are turning on an external force cos(x) at time t = 1 and turning it off again at time t = 2. It is an
exercise to show that (16) is solved by the function:

u(x, t) =


0, if t < 1,
cos(x)
c2 − cos(x+c(t−1))+cos(x−c(t−1))

2c2 if 1 < t < 2,
cos(x+c(t−2))+cos(x−c(t−2))

2c2 − cos(x+c(t−1))+cos(x−c(t−1))
2c2 if t > 2.

(18)

See the Mathematica file/visualisations page for an animation of this solution.

2 The Duhamel Formula

Above we derived the solution (12) to (13) by making a judicious change-of-coordinates using the method of
characteristics. Let us now consider another derivation of this solution, but from a different perspective.

Recall that the problem we are considering is utt − c2uxx = f(x, t) PDE
u(x, 0) = 0 IC1
ut(x, 0) = 0 IC2

(19)

Define an auxilliary function
U(x, t, τ), 0 < τ < t

as the solution to the auxilliary problem

Utt − c2Uxx = 0,
U |t=τ = 0,
Ut|t=τ = f(x, τ)

(20)

Proposition 2.1. (The Duhamel Formula) The function

u(x, t) =

∫ t

0

U(x, t, τ)dτ (21)

is a solution to (19).

Proof. The variable x appears only in the integrand, so we immediately have

uxx(x, t) =

∫ t

0

Uxx(x, t, τ)dτ. (22)

Applying the formula

d

dt

(∫ β(t)

α(t)

F (t, τ)dτ

)
= F (t, β(t))

dβ

dt
− F (t, α(t))

dα

dt
+

∫ β(t)

α(t)

∂F

∂t
(t, τ)dτ (23)
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to (21) gives

ut(x, t) = U(x, t, t) +

∫ t

0

Ut(x, t, τ)dτ (24)

and by (20) U(x, t, t) = 0, so that

ut(x, t) =

∫ t

0

Ut(x, t, τ)dτ. (25)

Differentiating again with respect to t gives

utt(x, t) = Ut(x, t, t) +

∫ t

0

Utt(x, t, τ)dτ, (26)

and since by (20) Ut(x, t, t) = f(x, t),

utt(x, t) = f(x, t) +

∫ t

0

Utt(x, t, τ)dτ. (27)

But now

utt − c2uxx = f(x, t) +

∫ t

0

(
Utt − c2Uxx

)︸ ︷︷ ︸
=0

dτ = f(x, t)

so that u satisfies the desired PDE. It satisfies the desired initial conditions since

u(x, 0) =

∫ 0

0

Udτ = 0 and ut(x, 0) =

∫ 0

0

Utdτ = 0.

Remark 2.1. Let’s pause for a moment to consider what the Duhamel Formula (21) actually means:

• We want to solve an inhomogeneous problem for the wave equation (19).

• I.e. we are trying to solve for the dynamics of a wave (u) that is subject to some external force (f).
(Recall in Lecture 2 we saw that this is exactly the equation describing a string vibrating in the prescence
of an external force determined by f).

• Change focus to the effect of the external force f . Recalling that the final result in our derivation of
the wave equation was

utt − c2uxx =
external force

mass density

we see from Newton’s Second Law that the function f(x, t) represents an externally imposed acceleration
of the string.

• Consider imposing this acceleration f(x, τ) over the time period [τ −∆τ, τ ]. The string will acquire a

velocity of f(x, τ)∆τ and will be displaced by f(x, τ)∆τ2

2 . Assume that ∆τ is very small, so that we
may approximate ∆τ2 ' 0.

• Hence we have that to evolve a solution of (19) from time τ−∆τ to time τ , one must add the u(x, τ−∆τ)
(∆τ times) a solution to the problem, defined for t ≥ τ , Utt − c2Uxx = 0

U |t=τ = 0
Ut|t=τ = f(x, τ)

(28)

i.e. we have successfully moved the force from the PDE to the initial conditions, by explicitly considering
how the force is acting on the string at each moment in time.
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• Therefore, to evolve a solution of (19) from time 0 to time t, one simply adds up the contributions
coming from each time interval,

u(x, t) ∼ u(x, 0)︸ ︷︷ ︸
=0

+U(x, t,∆τ)∆τ + U(x, t, 2∆τ)∆τ + · · ·

Taking ∆τ → dτ to be infinitesimal, this is exactly the integral (21)

u(x, t) =

∫ t

0

U(x, t, τ)dτ.

Now: we have solved the auxilliary problem (20) before (it is a homogeneous wave equation, studied in
Lecture 4), so we know that the solution is

U(x, t, τ) =
1

2c

∫ x+c(t−τ)

x−c(t−τ)

f(x′, τ)dx′ (29)

and so

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

f(x′, τ)dx′dτ, (30)

in agreement with (12).

3 Domains of dependence and influence

Let’s now think a little harder about what D’Alembert’s Formula (15) is telling us about the solution to (6).
Recall that this formula is

u(x, t) =
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct
h(s)ds+

1

2c

∫∫
∆(x,t)

f(x′, t′)dx′dt′

Proposition 3.1. The solution u(x, t) to the IVP for the inhomogeneous wave equation (6) depends only
on:

• the values of the function f(x, t) on the domain ∆(x, t), and

• the values of the initial data g and h on the base of ∆(x, t).

Definition 3.1. ∆(x, t) is called the domain of dependence for the point (x, t).

Remark 3.1. The terminology “domain of dependence” makes sense in a very literal fashion: the value of the
solution u at the point (x, t) can only depend on data in the domain ∆(x, t).

Remark 3.2. [IvrXX, §2.5] calls ∆(x, t) the triangle of dependence. We use the terminology domain of
dependence since, as noted in [IvrXX, Remark 3], the concept is applicable to more general situations where
∆(x, t) is no longer a triangle.

Conversely, we could consider not the domain of points that will influence the solution at (x, t), but the
domain of points that data at (x, t) will itself influence (Figure 3)

∆+(x, t) := {(x′, t′) | (x, t) ∈ ∆(x′, t′)} (31)

Definition 3.2. ∆+(x, t) is called the domain of influence for the point (x, t).

Considering the domains of influence and dependence for any given point (x, t), we see that:

Proposition 3.2. The solution to the wave equation propagates at finite speed not exceeding c.

For instance: it will take at least t∗ units of time for data at position x to have an effect on the solution at
position x+ ct∗.
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Figure 3: Domain of influence.
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