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This week we will focus on first order partial differential equations, and the method of characteristics tech-
nique. Relevant textbook sections are [IvrXXl §2.1-2.2]: §2.1; §2.2. You may also wish to consult [Str08] §1.2
and §14.1].

1 Solving the Transport Equation

Consider the PDE

auy +bu, =0 (1)

-

where for the moment we leave the precise properties of a and b unspecified. If we let I(¢,z) := (a,b), then
the LHS of may be rewritten as

—

l-Vu. (2)
and taken together tell us that the function w is constant in the I direction, and therefore is constant
along the integral curves of | — curves in the (¢, z)-plane which satisfy the equation

dt dx
- 3)

a

i.e. curves such that the tangent vector to the curve at every point is given by .
Remark 1.1. If ||I]| = 1 we say that is the directional derivative of u in the I-direction.

Remark 1.2. Compare this to the transport equation we derived in Lecture 2,
ue(x,t) + Viz, tug(x,t) = S(z,t,u). (4)

where

e u is the density of the transported substance,
e V is the velocity of the transported substance, and

e S is an external source/sink term.

Then comparing equations we have that S = 0,

b dx

Viz,t) = — = —,

(@) a dt
and we may interpret and as saying that in the absence of external sources and sinks, the density
u remains unchanged from the point of view of an observer travelling along with the substance at velocity

V(z,t).


http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter2/S2.1.html
http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter2/S2.2.html
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1.1 Constant coefficient case

As a warmup, let’s consider the case where a and b are both constant; further let’s assume that a # 0 (we
solved the a = 0 version of this equation in Lecture 1). Writing ¢ = g, the characteristic curve equation
becomes

dx

. 5

ik (5)
which we may solve to obtain the integral curves = — ct = C', where C' is a constant along integral curves and
(provided we consider the entire (z,t)-plane) labels them (Figure [1)).

-10
Figure 1: Example of straight line characteristics.
Therefore, u depends only on C', and the general solution to our equation is
u(a,t) = ol — ct) (6)
where ¢ is an arbitrary function.

Definition 1.1. The solutions ¢(x — ct) are called running waves, and c is called the propagation speed.
1.1.1 Constant coefficient IVP

Consider the IVP

{ut—i—cuz = 0, (7)

u(z,0)

|
~
—

8
N—

We know that the general solution is given by u(z,t) = ¢(x — ct) for an arbitrary function ¢; using the initial
condition of @ gives

u(z,0) = d(z) = f(z)
and so the solution to the IVP @ is

u(z,t) = f(z — ct). (8)
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1.2 Variable coeflicient case

Suppose now that in the coefficients a and b are functions of the independent variables: a = a(x,t)
and b = b(x,t). It still makes sense to look for integral curves along which the solution u is constant — the
difference is that now the integral curves will not necessarilyﬂ be straight lines.

Example 1. Consider the IVP

ug +tu, = 0,
9
U 2 e )
The integral curve equation is
a7

hence the integral curves are z — %tQ = C for C a constant (Firgure , and the solution to the IVP is

1
u(z,t) = f (CE - t2> .
2
Example 2. Reversing the roles of z and ¢, consider the IVP

ur +tu, = 0,
{ u(0,t) = g(t) (10)

This is an ill-posed problem. First: the characteristic curves are still given by x — %tz =(C,andsoat x =0
t? = -2C

which has:

e Two real solutions for C' < 0.
e One solution for C' = 0.
e No real solutions for C' > 0.
Consider those curves that do intersect the t-axis: with the exception of x = %tz, these all intersect at two

points +t-(0). Since any solution is constant along these curves, we require that g(—t) = g(t) i.e. that g is
an even function. If g is not an even function, no solution can exist.

Now: suppose that g is even. Then we can solve for u along any characteristic curve that intersects the t-axis
— but we do not have any constraints on those curves that do not intersect the t-axis! Consequently, in the
region x > %tz we are unable to single out a particular solution, and so uniqueness fails.

1.3 Including a source/sink term

Suppose that we include a source/sink term S on the RHS of , so that we are considering the PDE
aus + buy = S(x,t,u). (11)
We can rewrite this as

(a,b) - Vu = S(x,t,u), (12)

11t is possible that some of the integral curves will still be straight lines, while others will be more complicated curves.
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Figure 2: Example of quadratic curve characteristics.
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so that rather than telling us that w is constant along characteristics, tells us how u changes along
characteristics. Recalling the integral curve equation bdt = adz , we have

du = %dt—l— @dm = %dt—l— %édt = Mdt = §dt
a

ot ox ot ora a
so that
dt dx du
o2 1
a b S (13)

Example 3. Consider the PDE
Ut + TUy = X

which yields the integral curve equation
dx

dt

T

This can be directly integrated to obtain the integral curves (Figure |3

t = log(z) + (constant) or equivalently x = Ce’.

-10

Figure 3: Example of exponential curve characteristics.

From we have du = dzr along integral curves, so that u = x + D where D is constant along integral
curves. Hence the general solution to the PDE is

u(z,t) =z + ¢p(xe™")
where ¢ is an arbitrary function of a single variable.

Let’s check that this really does solve our PDE. Letting s = we™*, we have

Ou _9sddp _ 40—t
ot ~ ot gs ~ re ¢lee)
@_ @/ _ —t 4/ —t
214 P =14 e @)

and so
U+ zuy = —ze ' (ve ) + o+ ze Y (veTt) = 2.
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1.3.1 Linear and semilinear case

Recall from Lecture 1 that:

e If a =a(x,t), b=>b(z,t), and S is a linear function of u, then is linear.
e If a =a(x,t), b=>b(z,t), and S = S(x,t,u) is not linear in u, then is semilinear.

Equation still holds, and gives us an ODE for u along the integral curves that we can solve.

Example 4. Consider the PDE

Ut + TU, = —uZ.

As in Example [3| the integral curves are given by x = Ce?. Equation gives us the equation

which we may solve to find
1
—=t+D
U

where D is contant along the integral curves ze~¢ = C. The general solution is therefore given by

u(x,t) = ———
@) = T e
where ¢ is an arbitrary function of one variable. See the Mathematica file (or visualisations page) for this

lecture for animated solutions with initial conditions u(z,0) = e~* and u(zx,0) = TTogTa]"

1.3.2 Quasilinear Transport Equation

Recall from Lecture 1 that if @ = a(x,t,u) or b = b(x,t,u) then is a quasilinear equation. Note that a
and b here are functions of u, not of the derivatives of wu.

A naive application of the method of characteristics to the solution of a quasilinear equation will usually fail:
the characteristic curves can intersect, leading to regions where u appears multivalued, and regions with no
characteristic curves where u appears undetermined.

It is possible to salvage the method of characteristics approach through a subtler analysis which incorporates
expansion /rarefaction waves which can emanate from intersection points of characteristic curves, and shock
waves which propagate a discontinuity between two solutions in regions where naively the solution would be
multivalued.

These approaches are beyond the scope of this course: for more information see [[vrXX] §12.1] (available
here) or [Str08, Ch.14.1].

1.4 An IBVP for the Transport Equation

So far we have only considered IVPs for the transport equation, where we look for a solution defined for all
x € R. We could also consider IBVPs, where we look for a solution only for some subset of x € R — e.g.
traffic entering a tunnel beginning at x = 0. In such a situation it is often not enough to simply impose
initial conditions — one must impose boundary conditions as well.


http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter12/S12.1.html
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Example 5. Consider the IBVP for the transport equation

u +cup, = 0, z>0,t>0, | PDE
u(z,0) = f(z), x>0, IC (14)
u(0,t) = g(t), t>0, BC

where ¢ > 0, so we are considering a right-moving flow with general solution u(z,t) = ¢(x — ct), for some
function ¢ which we will now determine.

t ~=ct
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Figure 4: IC and BC dependent regions of the IBVP .

To apply the initial condition: we set t = 0 to obtain
¢(z) = f(z) for x>0,
which (when we propagate forward in time) yields
u(xz,t) = f(x —ct) for x —ct > 0.
To solve for ¢ in the region x < ct, we apply the boundary condition at z =0
p(—ct) =g(t) fort>0

and so as we allow this solution to propagate forward in space along the characteristics t — £ = C' we obtain

u(z, t) :g(t— f)

c
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