APM 346 Lecture 3.

Richard Derryberry

January 15, 2019
This week we will focus on first order partial differential equations, and the method of characteristics technique. Relevant textbook sections are [IvrXX, §2.1-2.2]: §2.1; §2.2. You may also wish to consult [Str08, §1.2 and §14.1].

1 Solving the Transport Equation

Consider the PDE

$$
\begin{equation*}
a u_{t}+b u_{x}=0 \tag{1}
\end{equation*}
$$

where for the moment we leave the precise properties of a and b unspecified. If we let $\vec{l}(t, x):=(a, b)$, then the LHS of (1) may be rewritten as

$$
\begin{equation*}
\vec{l} \cdot \nabla u \tag{2}
\end{equation*}
$$

(1) and (2) taken together tell us that the function u is constant in the \vec{l} direction, and therefore is constant along the integral curves of \vec{l} - curves in the (t, x)-plane which satisfy the equation

$$
\begin{equation*}
\frac{d t}{a}=\frac{d x}{b} \tag{3}
\end{equation*}
$$

i.e. curves such that the tangent vector to the curve at every point is given by \vec{l}.

Remark 1.1. If $\|\vec{l}\|=1$ we say that (2) is the directional derivative of u in the \vec{l}-direction.
Remark 1.2. Compare this to the transport equation we derived in Lecture 2,

$$
\begin{equation*}
u_{t}(x, t)+V(x, t) u_{x}(x, t)=S(x, t, u) \tag{4}
\end{equation*}
$$

where

- u is the density of the transported substance,
- V is the velocity of the transported substance, and
- S is an external source/sink term.

Then comparing equations we have that $S=0$,

$$
V(x, t)=\frac{b}{a}=\frac{d x}{d t}
$$

and we may interpret (1) and (2) as saying that in the absence of external sources and sinks, the density u remains unchanged from the point of view of an observer travelling along with the substance at velocity $V(x, t)$.

1.1 Constant coefficient case

As a warmup, let's consider the case where a and b are both constant; further let's assume that $a \neq 0$ (we solved the $a=0$ version of this equation in Lecture 1). Writing $c=\frac{b}{a}$, the characteristic curve equation becomes

$$
\begin{equation*}
\frac{d x}{d t}=c \tag{5}
\end{equation*}
$$

which we may solve to obtain the integral curves $x-c t=C$, where C is a constant along integral curves and (provided we consider the entire (x, t)-plane) labels them (Figure 1).

Figure 1: Example of straight line characteristics.
Therefore, u depends only on C, and the general solution to our equation is

$$
\begin{equation*}
u(x, t)=\phi(x-c t) \tag{6}
\end{equation*}
$$

where ϕ is an arbitrary function.
Definition 1.1. The solutions $\phi(x-c t)$ are called running waves, and c is called the propagation speed.

1.1.1 Constant coefficient IVP

Consider the IVP

$$
\left\{\begin{align*}
u_{t}+c u_{x} & =0 \tag{7}\\
u(x, 0) & =f(x)
\end{align*}\right.
$$

We know that the general solution is given by $u(x, t)=\phi(x-c t)$ for an arbitrary function ϕ; using the initial condition of (7) gives

$$
u(x, 0)=\phi(x)=f(x)
$$

and so the solution to the IVP $\sqrt[7]{7}$ is

$$
\begin{equation*}
u(x, t)=f(x-c t) \tag{8}
\end{equation*}
$$

1.2 Variable coefficient case

Suppose now that in (1) the coefficients a and b are functions of the independent variables: $a=a(x, t)$ and $b=b(x, t)$. It still makes sense to look for integral curves along which the solution u is constant - the difference is that now the integral curves will not necessarily ${ }^{1}$ be straight lines.

Example 1. Consider the IVP

$$
\left\{\begin{align*}
u_{t}+t u_{x} & =0 \tag{9}\\
u(x, 0) & =f(x)
\end{align*}\right.
$$

The integral curve equation is

$$
\frac{d x}{d t}=t
$$

hence the integral curves are $x-\frac{1}{2} t^{2}=C$ for C a constant (Firgure 2), and the solution to the IVP is

$$
u(x, t)=f\left(x-\frac{1}{2} t^{2}\right)
$$

Example 2. Reversing the roles of x and t, consider the IVP

$$
\left\{\begin{align*}
u_{t}+t u_{x} & =0 \tag{10}\\
u(0, t) & =g(t)
\end{align*}\right.
$$

This is an ill-posed problem. First: the characteristic curves are still given by $x-\frac{1}{2} t^{2}=C$, and so at $x=0$

$$
t^{2}=-2 C
$$

which has:

- Two real solutions for $C<0$.
- One solution for $C=0$.
- No real solutions for $C>0$.

Consider those curves that do intersect the t-axis: with the exception of $x=\frac{1}{2} t^{2}$, these all intersect at two points $\pm t_{C}(0)$. Since any solution is constant along these curves, we require that $g(-t)=g(t)$ i.e. that g is an even function. If g is not an even function, no solution can exist.

Now: suppose that g is even. Then we can solve for u along any characteristic curve that intersects the t-axis - but we do not have any constraints on those curves that do not intersect the t-axis! Consequently, in the region $x>\frac{1}{2} t^{2}$ we are unable to single out a particular solution, and so uniqueness fails.

1.3 Including a source/sink term

Suppose that we include a source/sink term S on the RHS of (11) so that we are considering the PDE

$$
\begin{equation*}
a u_{t}+b u_{x}=S(x, t, u) \tag{11}
\end{equation*}
$$

We can rewrite this as

$$
\begin{equation*}
(a, b) \cdot \nabla u=S(x, t, u), \tag{12}
\end{equation*}
$$

[^0]

Figure 2: Example of quadratic curve characteristics.
so that rather than telling us that u is constant along characteristics, 12 tells us how u changes along characteristics. Recalling the integral curve equation $b d t=a d x$ (3), we have

$$
d u=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d x=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} \frac{b}{a} d t=\frac{a u_{t}+b u_{x}}{a} d t=\frac{S}{a} d t
$$

so that

$$
\begin{equation*}
\frac{d t}{a}=\frac{d x}{b}=\frac{d u}{S} \tag{13}
\end{equation*}
$$

Example 3. Consider the PDE

$$
u_{t}+x u_{x}=x
$$

which yields the integral curve equation

$$
d t=\frac{d x}{x}
$$

This can be directly integrated to obtain the integral curves (Figure 3)

$$
t=\log (x)+(\text { constant }) \quad \text { or equivalently } \quad x=C e^{t} .
$$

Figure 3: Example of exponential curve characteristics.
From (13) we have $d u=d x$ along integral curves, so that $u=x+D$ where D is constant along integral curves. Hence the general solution to the PDE is

$$
u(x, t)=x+\phi\left(x e^{-t}\right)
$$

where ϕ is an arbitrary function of a single variable.
Let's check that this really does solve our PDE. Letting $s=x e^{-t}$, we have

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial s}{\partial t} \frac{d \phi}{d s}=-x e^{-t} \phi^{\prime}\left(x e^{-t}\right) \\
& \frac{\partial u}{\partial x}=1+\frac{\partial s}{\partial x} \phi^{\prime}(s)=1+e^{-t} \phi^{\prime}\left(x e^{-t}\right)
\end{aligned}
$$

and so

$$
u_{t}+x u_{x}=-x e^{-t} \phi^{\prime}\left(x e^{-t}\right)+x+x e^{-t} \phi^{\prime}\left(x e^{-t}\right)=x .
$$

1.3.1 Linear and semilinear case

Recall from Lecture 1 that:

- If $a=a(x, t), b=b(x, t)$, and S is a linear function of u, then 11) is linear.
- If $a=a(x, t), b=b(x, t)$, and $S=S(x, t, u)$ is not linear in u, then 11 is semilinear.

Equation (13) still holds, and gives us an ODE for u along the integral curves that we can solve.
Example 4. Consider the PDE

$$
u_{t}+x u_{x}=-u^{2}
$$

As in Example 3, the integral curves are given by $x=C e^{t}$. Equation (13) gives us the equation

$$
-\frac{d u}{u^{2}}=d t
$$

which we may solve to find

$$
\frac{1}{u}=t+D
$$

where D is contant along the integral curves $x e^{-t}=C$. The general solution is therefore given by

$$
u(x, t)=\frac{1}{t+\phi\left(x e^{-t}\right)}
$$

where ϕ is an arbitrary function of one variable. See the Mathematica file (or visualisations page) for this lecture for animated solutions with initial conditions $u(x, 0)=e^{-x}$ and $u(x, 0)=\frac{1}{2 \log |x|}$.

1.3.2 Quasilinear Transport Equation

Recall from Lecture 1 that if $a=a(x, t, u)$ or $b=b(x, t, u)$ then 13 is a quasilinear equation. Note that a and b here are functions of u, not of the derivatives of u.

A naive application of the method of characteristics to the solution of a quasilinear equation will usually fail: the characteristic curves can intersect, leading to regions where u appears multivalued, and regions with no characteristic curves where u appears undetermined.

It is possible to salvage the method of characteristics approach through a subtler analysis which incorporates expansion/rarefaction waves which can emanate from intersection points of characteristic curves, and shock waves which propagate a discontinuity between two solutions in regions where naively the solution would be multivalued.

These approaches are beyond the scope of this course: for more information see [IvrXX, §12.1] (available here) or [Str08, Ch.14.1].

1.4 An IBVP for the Transport Equation

So far we have only considered IVPs for the transport equation, where we look for a solution defined for all $x \in \mathbb{R}$. We could also consider IBVPs, where we look for a solution only for some subset of $x \in \mathbb{R}$ - e.g. traffic entering a tunnel beginning at $x=0$. In such a situation it is often not enough to simply impose initial conditions - one must impose boundary conditions as well.

Example 5. Consider the IBVP for the transport equation

$$
\left\{\begin{array}{rlr|r}
u_{t}+c u_{x} & =0, & x>0, t>0, & \mathrm{PDE} \tag{14}\\
u(x, 0) & =f(x), & x>0, & \mathrm{IC} \\
u(0, t) & =g(t), & t>0, & \mathrm{BC}
\end{array}\right.
$$

where $c>0$, so we are considering a right-moving flow with general solution $u(x, t)=\phi(x-c t)$, for some function ϕ which we will now determine.

Figure 4: IC and BC dependent regions of the IBVP 14.
To apply the initial condition: we set $t=0$ to obtain

$$
\phi(x)=f(x) \quad \text { for } x>0
$$

which (when we propagate forward in time) yields

$$
u(x, t)=f(x-c t) \quad \text { for } x-c t>0
$$

To solve for ϕ in the region $x<c t$, we apply the boundary condition at $x=0$

$$
\phi(-c t)=g(t) \quad \text { for } t>0
$$

and so as we allow this solution to propagate forward in space along the characteristics $t-\frac{x}{c}=C$ we obtain

$$
u(x, t)=g\left(t-\frac{x}{c}\right) .
$$

References

[IvrXX] Victor Ivrii. Partial Differential Equations. online textbook for APM346, 20XX.
[Str08] Walter A. Strauss. Partial differential equations. John Wiley \& Sons, Ltd., Chichester, second edition, 2008. An introduction.

[^0]: ${ }^{1}$ It is possible that some of the integral curves will still be straight lines, while others will be more complicated curves.

