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This week we will focus on first order partial differential equations, and the method of characteristics tech-
nique. Relevant textbook sections are [IvrXX, §2.1-2.2]: §2.1; §2.2. You may also wish to consult [Str08, §1.2
and §14.1].

1 Solving the Transport Equation

Consider the PDE

aut + bux = 0 (1)

where for the moment we leave the precise properties of a and b unspecified. If we let ~l(t, x) := (a, b), then
the LHS of (1) may be rewritten as

~l · ∇u. (2)

(1) and (2) taken together tell us that the function u is constant in the ~l direction, and therefore is constant

along the integral curves of ~l – curves in the (t, x)-plane which satisfy the equation

dt

a
=
dx

b
(3)

i.e. curves such that the tangent vector to the curve at every point is given by ~l.

Remark 1.1. If ‖~l‖ = 1 we say that (2) is the directional derivative of u in the ~l-direction.

Remark 1.2. Compare this to the transport equation we derived in Lecture 2,

ut(x, t) + V (x, t)ux(x, t) = S(x, t, u). (4)

where

• u is the density of the transported substance,

• V is the velocity of the transported substance, and

• S is an external source/sink term.

Then comparing equations we have that S = 0,

V (x, t) =
b

a
=
dx

dt
,

and we may interpret (1) and (2) as saying that in the absence of external sources and sinks, the density
u remains unchanged from the point of view of an observer travelling along with the substance at velocity
V (x, t).

1

http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter2/S2.1.html
http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter2/S2.2.html
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1.1 Constant coefficient case

As a warmup, let’s consider the case where a and b are both constant; further let’s assume that a 6= 0 (we
solved the a = 0 version of this equation in Lecture 1). Writing c = b

a , the characteristic curve equation
becomes

dx

dt
= c (5)

which we may solve to obtain the integral curves x− ct = C, where C is a constant along integral curves and
(provided we consider the entire (x, t)-plane) labels them (Figure 1).

Figure 1: Example of straight line characteristics.

Therefore, u depends only on C, and the general solution to our equation is

u(x, t) = φ(x− ct) (6)

where φ is an arbitrary function.

Definition 1.1. The solutions φ(x− ct) are called running waves, and c is called the propagation speed.

1.1.1 Constant coefficient IVP

Consider the IVP {
ut + cux = 0,
u(x, 0) = f(x)

(7)

We know that the general solution is given by u(x, t) = φ(x− ct) for an arbitrary function φ; using the initial
condition of (7) gives

u(x, 0) = φ(x) = f(x)

and so the solution to the IVP (7) is

u(x, t) = f(x− ct). (8)



APM 346 Lecture 3 3

1.2 Variable coefficient case

Suppose now that in (1) the coefficients a and b are functions of the independent variables: a = a(x, t)
and b = b(x, t). It still makes sense to look for integral curves along which the solution u is constant – the
difference is that now the integral curves will not necessarily1 be straight lines.

Example 1. Consider the IVP {
ut + tux = 0,
u(x, 0) = f(x)

(9)

The integral curve equation is
dx

dt
= t,

hence the integral curves are x− 1
2 t

2 = C for C a constant (Firgure 2), and the solution to the IVP is

u(x, t) = f

(
x− 1

2
t2
)
.

Example 2. Reversing the roles of x and t, consider the IVP{
ut + tux = 0,
u(0, t) = g(t)

(10)

This is an ill-posed problem. First: the characteristic curves are still given by x− 1
2 t

2 = C, and so at x = 0

t2 = −2C

which has:

• Two real solutions for C < 0.

• One solution for C = 0.

• No real solutions for C > 0.

Consider those curves that do intersect the t-axis: with the exception of x = 1
2 t

2, these all intersect at two
points ±tC(0). Since any solution is constant along these curves, we require that g(−t) = g(t) i.e. that g is
an even function. If g is not an even function, no solution can exist.

Now: suppose that g is even. Then we can solve for u along any characteristic curve that intersects the t-axis
– but we do not have any constraints on those curves that do not intersect the t-axis! Consequently, in the
region x > 1

2 t
2 we are unable to single out a particular solution, and so uniqueness fails.

1.3 Including a source/sink term

Suppose that we include a source/sink term S on the RHS of (1), so that we are considering the PDE

aut + bux = S(x, t, u). (11)

We can rewrite this as

(a, b) · ∇u = S(x, t, u), (12)

1It is possible that some of the integral curves will still be straight lines, while others will be more complicated curves.
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Figure 2: Example of quadratic curve characteristics.
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so that rather than telling us that u is constant along characteristics, (12) tells us how u changes along
characteristics. Recalling the integral curve equation bdt = adx (3), we have

du =
∂u

∂t
dt+

∂u

∂x
dx =

∂u

∂t
dt+

∂u

∂x

b

a
dt =

aut + bux
a

dt =
S

a
dt

so that

dt

a
=
dx

b
=
du

S
. (13)

Example 3. Consider the PDE
ut + xux = x

which yields the integral curve equation

dt =
dx

x
.

This can be directly integrated to obtain the integral curves (Figure 3)

t = log(x) + (constant) or equivalently x = Cet.
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Figure 3: Example of exponential curve characteristics.

From (13) we have du = dx along integral curves, so that u = x + D where D is constant along integral
curves. Hence the general solution to the PDE is

u(x, t) = x+ φ(xe−t)

where φ is an arbitrary function of a single variable.

Let’s check that this really does solve our PDE. Letting s = xe−t, we have

∂u

∂t
=
∂s

∂t

dφ

ds
= −xe−tφ′(xe−t)

∂u

∂x
= 1 +

∂s

∂x
φ′(s) = 1 + e−tφ′(xe−t)

and so
ut + xux = −xe−tφ′(xe−t) + x+ xe−tφ′(xe−t) = x.
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1.3.1 Linear and semilinear case

Recall from Lecture 1 that:

• If a = a(x, t), b = b(x, t), and S is a linear function of u, then (11) is linear.

• If a = a(x, t), b = b(x, t), and S = S(x, t, u) is not linear in u, then (11) is semilinear.

Equation (13) still holds, and gives us an ODE for u along the integral curves that we can solve.

Example 4. Consider the PDE
ut + xux = −u2.

As in Example 3, the integral curves are given by x = Cet. Equation (13) gives us the equation

−du
u2

= dt

which we may solve to find
1

u
= t+D

where D is contant along the integral curves xe−t = C. The general solution is therefore given by

u(x, t) =
1

t+ φ(xe−t)

where φ is an arbitrary function of one variable. See the Mathematica file (or visualisations page) for this
lecture for animated solutions with initial conditions u(x, 0) = e−x and u(x, 0) = 1

2 log |x| .

1.3.2 Quasilinear Transport Equation

Recall from Lecture 1 that if a = a(x, t, u) or b = b(x, t, u) then (13) is a quasilinear equation. Note that a
and b here are functions of u, not of the derivatives of u.

A naive application of the method of characteristics to the solution of a quasilinear equation will usually fail:
the characteristic curves can intersect, leading to regions where u appears multivalued, and regions with no
characteristic curves where u appears undetermined.

It is possible to salvage the method of characteristics approach through a subtler analysis which incorporates
expansion/rarefaction waves which can emanate from intersection points of characteristic curves, and shock
waves which propagate a discontinuity between two solutions in regions where naively the solution would be
multivalued.

These approaches are beyond the scope of this course: for more information see [IvrXX, §12.1] (available
here) or [Str08, Ch.14.1].

1.4 An IBVP for the Transport Equation

So far we have only considered IVPs for the transport equation, where we look for a solution defined for all
x ∈ R. We could also consider IBVPs, where we look for a solution only for some subset of x ∈ R – e.g.
traffic entering a tunnel beginning at x = 0. In such a situation it is often not enough to simply impose
initial conditions – one must impose boundary conditions as well.

http://www.math.toronto.edu/courses/apm346h1/20181/PDE-textbook/Chapter12/S12.1.html
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Example 5. Consider the IBVP for the transport equation ut + cux = 0, x > 0, t > 0, PDE
u(x, 0) = f(x), x > 0, IC
u(0, t) = g(t), t > 0, BC

(14)

where c > 0, so we are considering a right-moving flow with general solution u(x, t) = φ(x − ct), for some
function φ which we will now determine.

Figure 4: IC and BC dependent regions of the IBVP (14).

To apply the initial condition: we set t = 0 to obtain

φ(x) = f(x) for x > 0,

which (when we propagate forward in time) yields

u(x, t) = f(x− ct) for x− ct > 0.

To solve for φ in the region x < ct, we apply the boundary condition at x = 0

φ(−ct) = g(t) for t > 0

and so as we allow this solution to propagate forward in space along the characteristics t− x
c = C we obtain

u(x, t) = g
(
t− x

c

)
.
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