APM 346 Deriving the Integral Curve Equation.

Richard Derryberry

January 15, 2019
The problem is as follows: given a vector field $\vec{l}(t, x)=(a(t, x), b(t, x))$ on $\mathbb{R}_{t, x}^{2}$, find a curve

$$
\gamma: \mathbb{R}_{s} \rightarrow \mathbb{R}_{t, x}^{2}
$$

such that \vec{l} is the tangent vector field of γ, i.e. so that

$$
\begin{equation*}
\frac{d \gamma}{d s}(s)=\vec{l}(\gamma(s)) \tag{1}
\end{equation*}
$$

Taking the s-derivative of $\gamma(s)=(t(s), x(s))$ and comparing with (1) gives

$$
\frac{d \gamma}{d s}(s)=\left(\frac{d t}{d s}(s), \frac{d x}{d s}(s)\right)=(a(\gamma(s)), b(\gamma(s)))=\vec{l}(\gamma(s))
$$

i.e.

$$
\frac{d t}{d s}=a(\gamma(s)) \quad \text { and } \quad \frac{d x}{d s}=b(\gamma(s)) .
$$

But now the projections of γ to the t - and x-coordinates, $t(s)$ and $x(s)$, satisfy

$$
\begin{array}{r}
d t=\frac{d t}{d s} d s=a(\gamma(s)) d s \\
d x=\frac{d x}{d s} d s=b(\gamma(s)) d s
\end{array}
$$

so that

$$
\frac{d t}{a(\gamma(s))}=d s=\frac{d x}{b(\gamma(s))}
$$

which is exactly the integral curve equation as presented in class.

