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1. Introduction: Local Systems.

1.1. Local Systems. Consider the differential equation (DE)

d

dz
u(z) =

λ

z
u(z), λ ∈ C a constant.

An undergraduate might say that a solution to this is zλ – but what does this mean for λ non-integral?

u(z) = zλ = eλ log(z) for a branch of log.

Figure 1. Analytic continuation of a solution of a DE around a loop.

The analytic continuation changes

log(z) 7→ log(z) + 2πi
zλ 7→ e2πiλzλ

}
“monodromy”

Could say that zλ is a multivalued function. The space of local solutions form a local system. We will see
various definitions of local systems shortly.

Let X be a (reasonable) topological space, and Op(X) the lattice of open sets; i.e. a category with a unique
morphism U → V if U ⊂ V .

Definition 1. A presheaf (of vector spaces) F is a functor

F : Op(X)op → Vect = vector spaces over C.

I.e. for every U ⊂ X open, F (U) is a vector space, and if U ⊂ V there is a unique linear map (think
“restriction”) F (V )→ F (U). We call F (U) = Γ(U ; F ) =“sections of F of U”.
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Definition 2 (Non-precise). A presheaf F is a sheaf if sections of F on U are “precisely determined by
their restriction to any open cover.”

Definition 3 (Formal). If {Ui} is an open cover of U ,

F (U)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui ∩ Uj)

is an equaliser diagram.

Example 1. Various kinds of functions form sheaves:

• all functions;
• CX the sheaf of continuous functions on X;
• C∞X smooth functions (if X is a smooth manifold);
• Oan

X holomorphic functions (if X is a complex manifold).

Example 2. The functor Cpre
X of constant functions on X is not a sheaf (consider the two point space with

the discrete topology).

Example 3. We can improve the above example so that it becomes a sheaf by instead considering the
locally constant functions CX . We call this a constant sheaf.

Remark Presheaves form a category (functor category); sheaves are contained in this as a full subcategory.

Definition 4. A sheaf is locally constant of rank r if there is an open cover {Ui} of X such that

F |Ui ∼= C⊕rUi .

Example 4. The solutions to the DE at the start of this section form a locally constant sheaf. On contractible
sets not containing 0 the solutions form a 1d vector space, and there are no global sections.

Definition 5 (One definition of a local system). A local system is a locally constant sheaf.

Definition 6. The stalk of a sheaf F at a point x is

Fx =
colim−−−−−−→

open U3x
F (U).

We sometimes call elements of the stalk germs of sections of F near x.

I.e. the stalk is sections on F (U 3 x) where sU ∈ F (U) and sV ∈ F (V ) are equivalent if there is W ⊂ U ∩V
containing x such that sU |W = sV |W .

If F is locally constant,

Fx = F (U) ∼= Cr for some small enough open set U 3 x.

Since the rank of a locally constant sheaf is constant on components, if x and y are in the same component,
Fx
∼= Fy. How can we realize this isomorphism?

If γ : [0, 1] → X is a path with γ(0) = x and γ(1) = y, and F is a locally constant sheaf, we can make the
following observation:
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Figure 2. Parallel transport of a section along a path.

Proposition 1.1. There is an isomorphism tγ : Fx
∼−→ Fy.

Proof. The isomorphism tγ is given by the chain of isomorphisms

Fx
∼←− F (U1)

∼−→ F (U1 ∩ U2)
∼←− F (U2)→ · · · → F (Un−1 ∩ Un)

∼←− F (Un)
∼−→ Fy.

�

Proposition 1.2. If γ is homotopic to γ̃ then tγ = tγ̃ .

Proof. Can contain both paths in a compact contractible set, then run a similar proof to above. �

Definition 7. The fundamental groupoid of X, denoted Π1(X), is a category with

• Objects: the points of X,
• Morphisms: {paths from x to y}/homotopy.

Observe that this really is a groupoid (not difficult).

Theorem 1.3. There is an equivalence of categories

{Locally constant sheaves on X} {Functors Π1(X)→ Vectfd}

F

{
x 7→ Fx

tγ : Fx → Fy

}
∼

This gives us another perspective on local systems. In particular, they are a homotopic invariant, not a
homeomorphism invariant.

1.1.1. Another perspective: Where do local systems come from? If X is a smooth manifold and π : E → X is
a smooth vector bundle, we can functorially produce the sheaf of sections E ,

E (U) = Γ(U ;E) 3 (s : U → E : π ◦ s = id).

How can we make sense of local constancy? Connections. Write Γ(E) = Γ(X;E) = E (X) for global
sections, and let ∇ : Γ(E)→ Ω1(E) be a connection.

Remark Can properly think of this as a map of sheaves E → Ω1(E ) – we get away with conflating bundles
with sheaves because our sheaves have nice properties (in particular we have partitions of unity at our
disposal).
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What is the candidate for local constancy? Horizontal sections:

ker(∇) = {s ∈ Γ(E)|∇s = 0}.

When does this behave nicely? This goes back to Frobenius: for concreteness let’s work locally with local
coordinates x1, . . . , xn on X and s1, . . . , sr a basis of (local) sections of E. Then

∇ ∂
∂xi

(sj) =
∑
k

aijksk,

where aijk is the connection matrix. Write s =
∑
fjsj . Then

∇s = 0 ⇐⇒

{
∂fj
∂xi

+
∑
k

aijkfk = 0

}
system of PDEs.

What then does it mean to have a locally constant sheaf? Morally: “Given an initial condition at a point,
there is a unique solution to this system of PDEs on some contractible neighbourhood.” Let’s phrase this in
a more precise and familiar way. Write ∇i := ∇ ∂

∂xi

.

Theorem 1.4 (Frobenius Theorem). If ∇i∇j = ∇j∇i for all i, j, then the sheaf ker(∇) is locally constant.
We then say that the connection is flat, or integrable.

Remark Globally this is phrased as ∇X∇Y −∇Y∇X = ∇[X,Y ] where X,Y are vector fields.

Thus we can expand on the previous theorem.

Theorem 1.5. There is an equivalence of categories

{Locally constant sheaves on X} {Functors Π1(X)→ Vectfd} {Integrable/flat connections on X}∼ ∼

2. Sheaves.

Fix X a topological space. Recall that a presheaf on X is a functor Op(X)op → Vect; or more generally we
could take

F : Op(X)op →


Set
Ab

Rings
etc.

F is a sheaf if “sections can be defined locally”.

Example 5. Given π : Y → X a continuous map of spaces, sections of Y over X, SY/X is a presheaf defined
by

SY/X(U) = {s : U → Y |πs(x) = x}.
This is a presheaf of sets.

Claim: SY/X is a sheaf.

Proof. Suppose {Ui} is an open cover of U ⊂ X, U open.

(1) If s, s′ ∈ SY/X(U) such that s|Ui = s′|Ui for all i, then it is clear that s = s′ (functions are defined
pointwise).

(2) If si ∈ SY/X(Ui) such that si|Ui∩Uj = sj |Ui∩Uj for all i, j, we can define

s ∈ SY/X(U) by s(x) = si(x) if x ∈ Ui.

�
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This example is very important – it gives us a huge variety of examples, and in some sense it gives us all
sheaves (we will make this precise soon).

Example 6. If Y = X × Z π1−→ X,

SX×Z/X(U) = C(U,Z) = {cts. functions U → Z}.

Example 7. If Z = C with the Euclidean topology, SX×C/X = CX , continuous complex valued functions
on X. Observe that we can consider this as a sheaf of sets, vector spaces, rings, etc.

Example 8. If Z = Cdisc, C with the discrete topology, then

SX×Cdisc/X = CX ,

locally constant functions on X (constant sheaf).

Example 9. If E
π−→ X is a complex vector bundle, i.e. there is an open cover {Ui} of X such that

E|Ui = π−1(Ui) ∼= Ui × Cr,

commuting with projection

π−1(Ui) Ui × Cr

Ui

∼=

such that

π−1(x) = Ex
∼−→ {x} × Cr.

Then SE/X = E is a sheaf of vector spaces – but in fact it is even more than that:

E is a sheaf of modules for the sheaf of rings CX .

Definition 8. A bundle of groups with fibre/structure group G is a map E → X of spaces such that there is
an open cover Ui such that E|Ui ∼= Ui ×G.

Example 10. What is a bundle of sets? A set is a discrete topological space, so a bundle of sets is a
convering space.

Example 11. A bundle of topological spaces is a fibre bundle.

Example 12. This is slightly subtle: a bundle of discrete vector spaces is not a vector bundle! Sections
here are somehow ‘locally constant’. This will give us another way to think about local systems.

Claim: If Y → X is a covering space, then SY/X is a locally constant sheaf of sets. I.e., locally it looks like
the sheaf of locally constant functions.

We would like a converse to this: given a locally constant sheaf, produce a covering space. We will actually
consider a more general construction.

2.1. Étalé spaces. Given a sheaf F on X, define the étalé space Ét(F ) as follows:

• As a set, it is the collection of germs of sections of F ,

Ét(F ) =
∐
x∈X

Fx.

• Topology: If U ⊂ X is open, s ∈ F (U), we have sx ∈ Fx for all x ∈ U . Then declare the sets

{sx |x ∈ U} ⊂ Ét(F ) to be open, and {sx |x ∈ U} ↔ U a homeomorphism.
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We have a map Ét(F )
π−→ X with Fx = π−1(x). In fact, π is a local homeomorphism. I.e. if sx ∈ Ét(F )

then there exists U 3 sx open in Ét(F ) such that π|U is a homeomorphism onto its image.

Claim: SÉt(F)/X
∼= F .

For each x ∈ X, need to give an element of Fx (to define a section Ét(F ) → X). Then we want to show
that given the defined topology, the stalks glue to a legitimate section of F .

A little clearer: check that the assignment

F → SÉt(F)/X

s ∈ F (U) 7→ {x 7→ sx}
is continuous. So: this gives an equivalence of categories

{Local homeomorphisms over X} {Sheaves of sets on X}

Ét(F ) F

∼

Inside of this, we have the equivalence

{Local homeomorphisms over X} {Sheaves of sets on X}

∪ ∪

{Covering spaces} {Locally constant sheaves}

Remark If F is a presheaf, Ét(F ) → X is still a local homeomorphism, so we can still take its sheaf of
sections

F sh = F+ = sh(F ) := SÉt(F)/X

which we call the sheafification of F . Sheafification is left adjoint to the inclusion functor i : Sheaves(X)→
Presheaves(X),

HomPresheaves(X)(F , i(G )) ∼= HomSheaves(X)(F
sh,G ).

2.2. Functors on sheaves. Given f : X → Y , what can we do with sheaves? We would like to be able to
push them forward and pull them back:

Sh(X) Sh(Y )

f∗

f∗

Given a sheaf F on X, define

f∗(F )(U) = F (f ∈ (U))

where U ⊂ Y is open. If G is a sheaf on Y , define

(f∗G )pre(V ) =
colim−−−−−→

U⊂f(V )
G (U),

where V runs over the open sets containing U , and define

f∗G = sh(f∗G pre).

In terms of local homeomorphisms (étalé spaces), the pullback sheaf/inverse image sheaf should be the
sections of the pullback

X ×Y E E

X Y

Example 13. Let f : X → pt, F a sheaf on X. Then f∗(F ) = Γ(F ) = F (X).
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So f∗ is a generalization of global sections. Think of f∗ as being sections along the fibres (at least when f
looks like a fibration).

If A is a set (i.e. a sheaf on a point), then

f∗(A) = AX , the constant sheaf.

Example 14. Let i : {x} ↪→ X. Then i∗F = Fx.

So we can think of pullback as a generalization of the stalk, at least when we are looking at inclusion of a
subspace.

Definition 9. If A is a set, i∗A is called the skyscraper sheaf at x.

2.3. Homological properties of sheaves. From now on we will turn away from sheaves of sets. Today,
Sh(X) means sheaves of abelian groups on X. We are interested in the following fact:

“Sh(X) is an abelian category.”

Definition 10. A category C is abelian if

(1) it contains a zero object (initial and terminal),
(2) is contains all binary products and coproducts,
(3) it contains all kernels and cokernels,
(4) every monomorphism is a kernel and every epimorphism is a cokernel.

Example 15. The category of all groups is a non-example – if H ⊂ G is non-normal then G/H is not a
group.

Properties: In an abelian category,

• HomC(A,B) is an abelian group.
• Finite products = finite coproducts.
• The first isomorphism theorem holds:

ker(f) A B coker(f)

coim(f) im (f)

f

∼

Example 16. For a ring R, R-modules form an abelian category.

Definition 11. In an abelian category C,
A

f−→ B
g−→ C

is called exact if im (f) = ker(g).

Observe that this implies that g ◦ f = 0.

Definition 12. A short exact sequence (SES) is an exact sequence of the form

0→ A→ B → C → 0.

Example 17. 0→ A→ A⊕ C → C → 0; such a SES is called split.

Proposition 2.1 (Splitting lemma). A SES 0→ A
f−→ B

g−→ C → 0 is split iff either

(1) there exists some s : B → A such that s ◦ f = idA; or,
(2) there exists some t : C → B such that g ◦ t = idC .
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Warning! This is a property of abelian categories. A t-splitting in the category of all groups would only tell
us that B is a semi -direct product.

Definition 13. A complex in C is a sequence of objects and morphisms

· · · → Ai−1 di−1−−−→ Ai
di−→ Ai+1 → · · · = A•

such that di ◦ di−1 = 0 for any i. We often write d2 = 0. Then the cohomology of this complex is

Hi(A•) =
ker(di)

im (di−1)
.

Definition 14. A morphism of complexes A• → B• is a commutative diagram

· · · Ai Ai+1 · · ·

· · · Bi Bi+1 · · ·

A morphism A• → B• is a quasi-isomorphism if it induces an isomorphism of cohomology Hi(A•)
∼−→ Hi(B•).

If C and D are abelian categories and F : C → D is a functor, we say

• F is additive if it preserves finite coproducts.
• F is left exact if it is additive and preserves kernels.
• F is right exact if it is additive and preserves cokernels.

If 0→ A→ B → C → 0 is a SES in C, then

• If F is left exact, 0→ F (A)→ F (B)→ F (C) is exact.
• If F is right exact, F (A)→ F (B)→ F (C)→ 0 is exact.

In abelian groups, we have the functors (for fixed A ∈ Ab)

Hom(A,−) : Ab→ Ab (left exact)

A⊗Z (−) : Ab→ Ab (right exact)

Example 18. Let A = Z/2 and take the SES 0→ Z ×2−−→ Z→ Z/2→ 0.

• Apply Hom(A,−): 0→ 0→ 0→ Z/2.

• Apply A⊗Z (−): Z/2 0−→ Z/2→ Z/2→ 0.

Claim: Sh(X) is an abelian category.

Sketch of proof. Consider F ,G ∈ Sh(X), φ : F → G .

ker(φ)(U) = ker(φU : F (U)→ G (U)),

so ker(φ) ∈ Sh(X). We can define

coker(φ) := sh(coker(φ)pre)

where

coker(φ)pre(U) = coker(φU ) = G /φU (F (U)).

�

Example 19 (Cokernel presheaf is not a sheaf.). Let X = R, F = ZR, G = Zx ⊕ Zy, x 6= y in R. How can
we define a map φ : ZR → Zx ⊕ Zy? Such a map is equivalent to a global section s ∈ Γ(Zx ⊕ Zy) ∼= Z ⊕ Z.
Choose (1, 1) ∈ Z⊕ Z. What is the cokernel of this map?
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Figure 3. Cover of R by two open sets U and V .

Then

φU : Z ∼−→ (Zx ⊕ Zy)(U) = Z,

φV : Z ∼−→ Z.

So

coker(φ)pre(U) = 0 and coker(φ)pre(V ) = 0.

But!

coker(φ)pre(R) = coker(Z (1,1)−−−→ Z⊕ Z) ∼= Z.
Recall that sheafification is global sections of the étalé space Ét(F ) =

∐
Fz. From the above, Fz = 0 for

all z ∈ R. Thus,

coker(φ) = 0.

Example 20. Let X = Rt, F = G = C∞R (complex valued smooth functions). We have a map

d

dt
: C∞R → C∞R , with ker

(
d

dt

)
= CR (locally constant functions).

What about the cokernel? Let U ⊂ R be open, f ∈ C∞(U). Want to construct a function F such that
d
dtF = f ; we can do this (fundamental theorem of calculus), e.g. let F (t) =

∫ t
t0
f(x)dx. So this map of

sheaves is surjective.

Example 21. Let X = S1 = R/Z, d
dt : C∞S1 → C∞S1 . Then ker

(
d
dt

)
= CS1 again. Since any open interval

U ⊂ S1 is diffeomorphic to R, d
dt |U : C∞U → C∞U is surjective. So the cokernel sheaf is coker

(
d
dt

)
= 0.

But: That the constant function 1S1 ∈ C∞S1 . This is not in the image of d
dt |S1 : C∞(S1)→ C∞(S1).

Example 22. Phrased differently, we have a SES of sheaves on S1,

0→ CS1 → C∞S1

d
dt−→ C∞S1 → 0.

But if we take global sections Γ,

0→ C ↪→ C∞(S1)
d
dt−→ C∞(S1),

i.e. the final map is not surjective. This is a manifestation of the fact the Γ is left exact (but not exact). If
we do take the cokernel we have

0→ C ↪→ C∞(S1)
d
dt−→ C∞(S1)→ H1

dR(S1) = C.

Proposition 2.2. In general, Γ : Sh(X)→ Ab is left exact.

On the other hand, exactness can be checked locally.

Proposition 2.3. A sequence of sheaves F
φ−→ G

ψ−→ H is exact if and only if Fx
φx−−→ Gx

ψx−−→ Hx is exact
for all x ∈ X.
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If f : X → Y is a map of topological spaces, F ∈ Sh(X) and G ∈ Sh(Y ), recall we have

f∗(F ) ∈ Sh(Y ) and f∗(G ) ∈ Sh(X).

Recall that

f∗(G )(U) = sh

(
U 7→ colim−−−−−→

V⊃f(U)
G (V )

)
.

Proposition 2.4. f∗ is left adjoint to f∗.

I.e. HomSh(X)(f
∗G ,F ) ∼= HomSh(Y )(G , f∗F ) is a natural bijection.

Proof. Want to construct natural transformations

f∗f∗
c−→ idSh(X) and idSh(Y )

u−→ f∗f
∗.

Why? Given u, c as above,

Hom(f∗G ,F Hom(f∗f
∗G , f∗F )

Hom(G , f∗F )

f∗

Figure 4. Since the map f may not be open, a colimit is required.

Now,

(f∗)pref∗(F )(U) =
colim−−−−−→

V⊃f(U)
F (f−1(V )),

and we have restrictions F (f−1(V )) → F (U) for each such V , and thus a map from the colimit. This
defines a map (f∗)pref∗ → idPSh(X); then we use the universal property of sheafification to obtain the counit
f∗f∗ → idSh(X). �

2.4. Simplicial homology. Simplices:

Figure 5. Low dimensional simplices.
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So,

n-simplex↔ (0→ 1→ · · · → n) = [n].

The faces of an n-simplex are the ordered subsets S ⊂ {0, . . . , n}.

Figure 6. Faces of a 2-simplex.

Define the simplex category ∆:

Objects: [0], [1], [2], . . ..
Morphisms: order preserving maps [n]→ [m].

Definition 15. A simplicial set is a functor X : ∆op → Set (i.e. a presheaf on ∆).

So we have the category sSet, and there is an embedding

∆ sSet

[n] Hom(−, [n]) =: [n]

Yoneda

The fully faithful category given by this is the one with all simplices and all colimits of such (things glued
together from simplices).

A simplicial set gives a recipe for building a simplicial topological space.

sSet Top

[n] ∆n

|·|

where |·| is geometric realization and we extend this definition to all sSet preserving colimits. If X : ∆op → Set
is a simplicial set we write

X([n]) = Xn

for the set of n-simplices, and if we have a map f : [n] → [m] in ∆ this induces X(f) : Xm → Xn and
f∆ : ∆m → ∆n in Set. So now take concretely

|X| =
∐
n

(Xn ×∆n)/ ∼

where

(σ, f∆(t)) ∼ (X(f)(σ), t) for σ ∈ Xn, t ∈ ∆n.

Consider the following diagram in ∆:

[0] [1] [2] [3] · · ·
d0

d1
s0
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The arrows in this diagram give all possible order preserving maps between adjacent simplices. The maps
shown are distinguished maps which we call coface (di) and codegeneracy (si) maps. If X is a sSet we have
a diagram with face and degeneracy maps

X0 X1 X2 · · ·

A simplex in Xn is called degenerate if it is in the image of a degeneracy map. Think:

“Degenerate simplices are secretly lower-dimensional simplices.”

Figure 7. Simplicial description of S1 for example 23.

Example 23. How to prescribe the complex from Figure 7? As a semi -simplicial set (use only face maps),

X0 = {a} {b} = X1,

so that we send both faces to the point a. As a simplicial set we would need to keep track of the degeneracies,
e.g. X1 = {b, s0(a)}.

If Y is a topological space, we can produce a simplicial set S(Y ) by talking

S(Y )n = HomTop(∆n, Y ),

the singular simplicial set. This is a sSet, since

f : [m]→ [n] induces f∆ : ∆m → ∆n induces S(Y )n → S(Y )m.

Theorem 2.5. If Y is a CW-complex, then |S(Y )| ' Y (homotopy equivalence).

We can also talk about simplicial abelian groups,

∆op → Ab,

and more generally simplicial objects in a category C are ∆op → C .

Example 24. If X is a simplicial set we can define a “free” simplicial abelian group ZX by

(ZX)n = Z ·Xn.

Given a simplicial abelian group A we can make a chain complex C(A)•:

C(A)n = An, δn :
An → An−1

a 7→
∑
i(−1)idi(a)

,

and one can prove that δn−1δn = 0 (left as an exercise).

Remark This construction did not use the degeneracy maps – so this makes sense for semi-simplicial sets.

We have a subcomplex (check!) of degenerate simplices D(A) ⊂ C(A).
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Proposition 2.6. D(A) is chain homotopic to 0.

In fact,
C(A) = D(A)⊕N(A)

where N(A) is the normalised chain complex and N(A) ∼ C(A) (chain homotopic).

If X is a simplicial set we can define
C•(X;Z) = C(ZX),

and the singular homology is
Hi(X;Z) = Hi(C(ZX)).

If Y is a topological space then S(Y ) produces

Csing
i (Y ;Z) (singular chains on Y ), and Hsing

i (Y ;Z) (singular homology).

Figure 8. Nondegenerate simplices of S1.

Example 25. Claim that

N(S1;Z) = Za Zb

degree: 0 1

0

Of course,
D(ZS1) = Za← Zb⊕ Zs0(a)← · · ·

plus higher degenerate simplices which make no contribution to homology.

We can also define more generally Hi(X;A) for A an abelian group.

2.4.1. Homology with coefficients in a local system. Suppose E is a local system on |X| (i.e. E is a locally
constant sheaf of abelian groups). Want to define Hi(X; E ). Take (provisionally)

Cn(X; E ) = {(x, s) |x ∈ Xn, s ∈ Γ(x∗E )}.
What does this mean? x ∈ Xn, so think of this as x : ∆n → |X|. But we can’t add simplices, so we actually
want our n-chains to be:

Cn(X; E ) = 〈(x, s) |x ∈ Xn, s ∈ Γ(x∗E )〉
(i.e. the abelian group generated by the terms in the angle brackets.) Now, the n-simplex is contractible,
thus x∗E is trivializable (so we can take sections):

x∗E E

∆n |X|

s

x

Now stalkwise, A = Ey ( for some y ∈ |X|), and so on ∆n, Γ(x∗E ) = A.

If we took the trivial local system, we would see that we recover our previous notion of singular homology.

We define face maps di : Cn(X; E )→ Cn−1(X; E ) as before by restricting sections to faces.
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Example 26. See Figure 9.

Figure 9. Visual representation of the “simplices” in local cohomology.

Then
∂ :=

∑
(−1)idi : Cn(X; E )→ Cn−1(X; E ).

Example 27. X = S1, so π1(S1) = Z. Then

Local system on S1 ⇐⇒ Rep of π1(S1) ⇐⇒ (A, t ∈ Aut(A))

where A is the stalk of E at some chosen basepoint.

Figure 10. A local system on S1.

What is our complex?

•1

A A which we can see graphically via: 0•

degree: 0 1 •0

id

id−t
apply monodromy t

Example 28. If E = ZS1 , then we have Z 0←− Z.

Example 29. If A = C, t = λ ∈ C×, then we have

C id−λ←−−− C.
So if λ 6= 1, id− λ : C ∼= C, so H0 = 1, H1 = 0, etc. . .
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2.4.2. Cohomology with coefficients in a local system. Above, we have defined for a sSet/topological space X
and local system E

(∆i → X) ∈ Ci(X; E ) Hi(X; E )
H∗

We can give this a slightly more down to earth description: an i-simplex with coefficients in E is an i-simplex
with a lift

Ét(E )

∆i X

and the differential is induced by the face inclusions ∆i−1 ↪→ ∆i. We can also define cohomology with
coefficients in a local system, Hi(X; E ), by taking the cochains to be

Ci(X; E ) :=

φ
∣∣∣∣∣∣∣∣∣φ assigns to each simplex a lift,

Ét(E )

∆i X

φ(σ)

σ

 ,

and defining the differential d : Ci → Ci+1 to be the alternating sum of coface maps dr : Ci → Ci+1, where

dr(φ)(σi+1) = φ(dr(σ
i+1)).

3. Sheaf cohomology as a derived functor.

3.1. Idea and motivation. Where are we going? Our next goal is to prove Poincaré Duality : If M is
a closed n-manifold, then

Hi(M ;ZM ) ∼= Hn−i(M ; OrM ),

where OrM is the orientation local system.

Remark If M is orientable, OrM is the constant sheaf.

Example 30. If M = S1,

H0, H1 = Z

H1, H0 = Z

Poincaré Duality

We will actually recover Poincaré duality as a special case of Verdier duality. So, in order to continue, we
need to define sheaf cohomology.

Motivating sheaf cohomology. If E is a local system, what is H0(X; E )? A 0-cochain assigns to each

0-simplex x ∈ X an element of the stalk at x. I.e. this is a discontinuous section of Ét(E ).

What does it mean to be closed? If I have two points and a path between them, the elements of the
stalk have to be compatible. I.e. we must have a continuous function:
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Figure 11. H0 gives continuous sections.

I.e. H0(X; E ) = Γ(E ).

In general, given a sheaf F we want to define functors Hi(X; F ) such that H0(X; F ) = Γ(F ).

Idea: These functors should measure the non-exactness of Γ.

Given a SES of sheaves 0→ F ′ → F → F ′′ → 0, taking Γ gives

0→ Γ(F ′)→ Γ(F )→ Γ(F ′′)→ ?

In order to measure the failure of exactness, the we will define a next term in this sequence called H1(F ′) –
it turns out that this will only depend on H1(F ′).

Definition 16. A sheaf F is called flabby (or flasque) if for each V ⊆ U ⊆ X of open sets, F (U)→ F (V )
is surjective.

Proposition 3.1. Suppose 0→ F ′
f−→ F

g−→ F ′′ → 0 is a SES, and F ′ is flabby. Then

0→ Γ(F ′)→ Γ(F )→ Γ(F ′′)→ 0

is exact.

Proof. Let s′′ ∈ Γ(F ′′) = F ′′(X). Let’s define a set

S := {(U, s) | s ∈ F (U) such that g(s) = s′′|U}.

We want to show that there is an element of this set with U = X. S has a partial order

(U1, s1) ≤ (U2, s2) if U1 ⊆ U2 and s2|U1 = s1.

Zorn’s lemma implies that there is a maximal (U, s) in S.

Suppose that x ∈ X − U . We can find V 3 x open in X, and t ∈ F (V ) such that g(t) = s′′|V .
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Figure 12. Proving that the maximal element is X.

On U ∩ V , q := s|U∩V − t|U∩V ∈ F (U ∩ V ) has the property that g(q) = 0. By left exactness, g(q) = 0
implies that there exists w ∈ F ′(U ∩ V ) such that f(w) = q.

Now, since F is flabby, there exists r ∈ F ′(X) such that r|U∩V = w. Let t′ = t+ f(r)|V ∈ F (V ) Note that

g(t′) = s′′|V = g(t)

by exactness of 0→ F ′ → F → F ′′ → 0, and that s|U∩V = t′|U∩V . Thus there exists a section s̃ ∈ F (U∪V )
such that g(s̃) = s′′|U∪V . But this contradicts maximality of (U, s). Thus, U = X. �

3.2. Homological Algebra. Idea: If 0→ F ′ → F → F ′′ → 0 is a SES, we want a (functorial) LES

0 Γ(F ′) Γ(F ) Γ(F ′′)

H1(F ′) H1(F ) H1(F ′′)

H2(F ′) H2(F ) H2(F ′′) · · ·

The collection of functors {Hi}i∈Z≥0
is called a δ-functor.
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There are also naturality conditions. Given a map of SES,

0 0

F ′′1 F ′′2 Hi+1(F ′1) Hi+1(F ′2)

F1 F2 Hi+1(F ′′1 ) Hi+1(F ′′2 )

F ′1 F ′2

0 0

require that

δ 	 δ

Where does this come from? If 0 → A• → B• → C• → 0 is a SES of cochain complexes (concentrated
in nonnegative degrees), there exists a LES

0 · · · Hi(A) Hi(B) Hi(C)

Hi+1(A) Hi+1(B) Hi+1(C) · · ·

δ

I.e. {Hi} is a δ-functor.

Suppose we have

0 Ai Bi Ci 0

0 Ai+1 Bi+1 Ci+1 0

f

d

g

d d

f g

We want to define a map Hi(C)
f−→ Hi+1(A). Let c ∈ Hi(C), and choose a representative c̃ ∈ Ci such that

dc̃ = 0. There exists b̃ ∈ Bi such that g(b̃) = c̃; g(db̃) = 0, so there exists ã ∈ Ai+1 such that f(ã) = db̃. But
now, f(dã) = 0, so dã = 0 and thus ã represents a class a ∈ Hi+1(A). Thus we define

h(c) = a.

We can see the argument diagrammatically as follows:

b̃ c̃

0 Ai Bi Ci 0

0 Ai+1 Bi+1 Ci+1 0

ã db̃

and so

0 Ai+2 Bi+2

dã 0

Computing cohomology. Let’s assume that we’ve already constructed

Hi(X;−) : Sh(X)→ Ab

as a δ-functor. How would we compute this?

Remark There is a category of cohomological δ-functors, and there is a notion of a universal δ-functor: a
terminal object in this category. The Hi(X;−) will be universal in this sense.
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Suppose also that there exists a collection of sheaves A := {A }, such that Hi(A ) = 0 for i > 0 when A ∈ A
(acyclics), and for each F there is some A ∈ A such that F ↪→ A .

It turns out that flabby sheaves are such an example:

F ↪→ G(F ) :=
∏
x∈X

ix(Fx).

G(F ) is called the sheaf of discontinuous sections of F .

Now, let’s compute H1. There is a SES 0 → F → A 0 → K 1 → 0 which we can continue into an exact
sequence by finding an acyclic A 1 such that K 1 ↪→ A 1, splicing in the result, and then repeating the
procedure for K 2 and etc.:

0 0

K 2

0 F A 0 A 1 A 2 A 3

K 1 K 3

0 0 0

Taking the cohomology LES gives

H0(F )→ H0(A 0)→ H0(K 1)→ H1(F )→ H1(A 0) = 0,

since A 0 is acyclic. So we can express

H1(F ) = H0(A 0)/im (H0(A 0)).

Continuing the LES,

H1(A 0) = 0→ H1(K 1)
∼−→ H2(F )→ 0.

Now as in the above splicing picture, we can play the same game for K 1 ↪→ A 1:

H2(F ) ∼= H1(K 1) = H0(K 2)/im (H0(A 1)).

How can we splice this information together? A • is a complex, and we have a cohomology sheaf
H i(A •). We also (importantly!) have the

Hi(Γ(A •)) = Hi(F ).

Why? Exactness gives that

ker(A 1 → A 2) = K ,

so

H1(F ) = ker(H0(A 1)→ H0(A 2))/im (H0(A 0)→ H0(A 1)).

Summary: If for all F ∈ Sh(X) there exists A • such that F ↪→ A • and Hi(A •) = 0 for all i > 0, then
we can compute Hi(F ) as Hi(Γ(A •)). We call such an A • an acyclic resolution.

Definition 17. A δ-functor which has the above property (i.e. existence of acyclic resolutions) is called
effacable.

Theorem 3.2. An effacable δ-functor is universal.
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3.2.1. Injective resolutions. Let C be an abelian category. An object I ∈ C is injective if Hom(−, I) is exact.
I.e.

0 A B

I
∃

Remark If 0→ I → B → C → 0 is a SES it is split, since

0 I B C 0

I
splitting map

Remark If F is an additive functor, it preserves split exact sequences.

Example 31. In Ab, Z is not injective; e.g.

0→ Z ×2−−→ Z→ Z/2Z→ 0,

but Z 6∼= Z⊕ Z/2Z. On the other hand, Q is injective.

Definition 18. A category C is said to have enough injectives if for all A ∈ C there exists I injective such
that A ↪→ I. Having enough injectives implies the existence of injective resolutions A→ I•.

Suppose F : C → D is left exact, and C has enough injectives. Then we can define a (universal) δ-functor
RiF as follows:

RiF (A) := Hi(F (I•)),

where A→ I• is an injective resolution.

Why is this well defined, and why is it a δ-functor? This boils down to the comparison lemma

A B

I• J•∃

and the Horseshoe lemma

0 A B C 0

0 I• J• := I• ⊕K• K• 0

In particular:

Hi(X;−) = RiΓ(X;−).

Remark The LES sequence of the δ-functor is exactly the cohomology LES of

0→ F (I•)→ F (J•)→ F (K•)→ 0.

We can compute cohomology using injective resolutions.

3.3. Why does Sh(X) have enough injectives? Ab has enough injectives, since Q/Z is injective and

A
embeds−−−−→ Hom(A,Q/Z)

embeds−−−−→
∏

Q/Z.

Then for F ∈ Sh(X), we can construct injectives I(−) using the above procedure (see [W]) to obtain

F ↪→ G(F ) =
∏
x∈X

(ix)∗(Fx) =
∏
x∈X

(ix)∗I(Fx).
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3.4. Computing sheaf cohomology. Recall that we can compute cohomology using acyclic resolutions.

Proposition 3.3. Flabby sheaves are acyclic.

Proof. If F is flabby, take an injective resolution 0→ F → I•. Now, injective sheaves are flabby (exercise),
and in the SES

0→ F → I• → K → 0

K is also flabby (exercise). So the LES of a δ-functor gives

0 H0(F ) H0(I) H0(K )

H1(F ) 0 0

H2(F ) 0 · · ·

0

�

We have F ↪→ G(F ), so we have from this the Godement resolution F ↪→ G•(F ), and so

Hi(X; F ) = Hi(Γ(G•(F ))).

Computing cohomology with the Godement resolution is, however, bloody stupid. Thankfully we have already
seen that all we need are acyclic resolutions.

Figure 13. Sum of two singular chains.

3.4.1. Singular cohomology. Let C sing,pre
X be the presheaf of singular cochains on X with coefficients in Z.

This is not a sheaf!

Let σ ∈ Ci(X) be as pictured in Figure 13, and let ϕ ∈ Ci(X) be defined by ϕ(σ) = 1 and ϕ(σ̃) = 0 if
σ̃ 6= λσ. Then in particular, ϕ|U ≡ 0.

So C sing,pre
X is not a sheaf. But for sort of a silly reason: if we define σ1 and σ2 as in Figure 13 then ϕ(σi) = 0,

but ϕ(σ1 + σ2) = ϕ(σ) = 1. We really should have that σ1 + σ2 and σ represent the same object.

So, define C sing
X := sh(C sing,pre

X ).

Claims:
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(1) There is a quasi-isomorphism C sing
X (X)• ' C sing,pre

X (X)• = Csing(X)• (this uses “the lemma of small
chains”).

(2) C sing
X is flabby.

(3) If X is locally contractible, then

ZX → C sing
X

is a resolution. For this, exactness on small enough contractible opens is sufficient; then H0 = Z and
Hi = 0 for i > 0.

So if X is locally contractible, then for a locally constant sheaf E ,

Hi(X; E ) = Hi
sing(X; E ).

3.4.2. De Rham cohomology. If M is a smooth manifold, then we have the sheaf of smooth i-forms on M ,
A i
M . Using the de Rham differential we get a complex

A •M := C∞M = A 0
M

d−→ A 1
M

d−→ A 2
M

d−→ · · ·
Then the Poincaré lemma says that CM → A •M is a resolution. I.e.,

0→ C→ A0(Rn)→ A1(Rn)→ · · · → An(Rn)→ 0

is exact (“any closed form on Rn is exact”).

Remark Really this is just an application of the fundamental theorem of calculus.

Now: the A i
M are not flabby, but they are fine (and soft).

Exercise 3.1. Prove that the A i
M are acyclic (hint: partitions of unity). Thus it will follow that

Hi(M ;CM ) ∼= Hi(A •M (M)) = Hi
dR(M ;C).

3.4.3. Dolbeault resolution. If X is a complex manifold, we have sheaves OX of holomorphic functions and
ΩiX of holomorphic i-forms. We have that

CX → Ω0
X

d−→ · · · → ΩnX

is a resolution. But we can’t compute cohomology with this: the ΩiX are not acyclic!

What we can do is the following. Begin by embedding Ω0
X ↪→ A 0

X (smooth functions). Then we have a
resolution

Ω0
X → A 0

X
∂̄−→ A 0,1 ∂̄−→ A 0,2 → · · · → A 0,n,

and this is an acyclic resolution. In fact, we can form a double complex:

A 0,n

...
...

A 0,1 A 1,1

A 0
X A 1,0 · · ·

Ω0
X Ω1

X · · · ΩnX

∂̄

∂

∂̄ ∂̄

∂

∂̄ ∂̄

Then we have that in fact

Hp(ΩqX) = Hq,p
Dol(X) =: Hp(Γ(A q,•), ∂̄).
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4. More derived functors.

If f : X → Y we have the functor
f∗ : Sh(X)→ Sh(Y );

observe that f∗ = Γ if f : X → pt. f∗ is a left exact functor between abelian categories, so we can define the
right derived functors of f∗

Rif∗(F ) = H i(f∗(I
•))

where I is an injective/flabby/acyclic resolution of F , and so f∗(I ) is a complex of sheaves on Y . Thus
Rif∗(F ) ∈ Sh(Y ).

Example 32. If f : X → Y is a fibration (or fibre bundle, or submersion), then for the constant sheaf
Rif∗(ZX) ∈ Sh(Y ), and on stalks

Rif∗(ZX)y = Hi(f−1(y);Z).

Warning! Take i : C× ↪→ Z and pushforward the constant sheaf (or sheaf of singular cochains). Then since
locally around 0 ∈ C we have punctured open balls (∼= C×) our stalk at zero picks up

R1i∗(ZC×)0
∼= H1(C×;Z) = Z.

Now, if X
f−→ Y

g−→ Z it is easy to show that (g ◦ f)∗ = g∗f∗. What about Rig∗ ◦Rjf∗?

Example 33. Using Z = pt we might wish to try and compute cohomology on a fibration by understanding
how the cohomology of the fibres varies and taking the sheaf cohomology of that. This is computed using
the Leray spectral sequence, which is a potential topic for another day.

For the moment we take a different tack. We have

Rif∗(F ) = H i(f∗(I
0)→ f∗(I

1)→ · · · ),
so we define the total derived functor to be

Rf∗(F ) = f∗(I
0)→ f∗(I

1)→ · · ·
We will worry about the dependence upon a choice of I in a second. Observe that

Rg∗ ◦Rf∗ = R(g ◦ f)∗ = g∗f∗(I
•).

This makes sense, as the pushforward of an injective resolution is still an injective resolution.

Remark The equation Rg∗ ◦Rf∗ = R(g ◦ f)∗ secretly encodes the Leray-Serre spectral sequence.

Remark If F • is a complex of sheaves (bounded below) we can find an injective resolution

F •
quasi-isomorphism−−−−−−−−−−−→ I •,

and Rf∗(F •) = f∗(I •).

What is going on here? We would like to say that we have a functor

Rf∗ : {Complexes of sheaves on X.} → {Complexes of sheaves on Y .},
but this doesn’t make sense – there are sheaves which are quasi-isomorphic but not isomorphic. We can fix
this by taking (roughly)

Rf∗ : D+(Sh(X))→ D+(Sh(Y )),

where D+(Sh(X)) is the derived category,

D+(Sh(X)) = {bounded below complexes of sheaves on X}[quasi-isomorphisms]−1,

a category whose objects are complexes, whose morphisms are morphisms of complexes, but where all quasi-
isomorphisms have been inverted.

Warning! This is not rigorous definition – there are problems we will tackle later.
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Remark If F and G are objects in D+(Sh(X)) and H i(F ) ∼= H i(G ) for all i, it is not necessarily true
that F ' G (quasi-isomorphism).

Example 34. Consider the Hopf fibration S1 ↪→ S3 f−→ S2. We want to consider Rf∗(ZS3) ∈ D+Sh(S2).
Let’s look at the cohomology objects Rif∗(ZS3) ∈ Sh(S2). f is a fibration, so for U ⊂ S2 a small disk,

Γ(U ;Rif∗(ZS3)) = Hi(f−1(U)︸ ︷︷ ︸
S1×U

;Z) ∼= Hi(S1;Z).

So the Rif∗(ZS3) are locally constant, and since S2 is simply connected, locally constant sheaves are constant.
Hence,

R0f∗(ZS3) = ZS2 (measuring H0 of fibres)

R1f∗(ZS3) = ZS2 (measuring H1 of fibres)

What is the total derived functor Rf∗(ZS3)? There is always an obvious guess:

ZS2 ⊕ ZS2 [−1].

Consider

S3 f−→ S2 p−→ pt,

which gives

Rp∗︸︷︷︸
RΓ(S2;−)

Rf∗ = R(p ◦ f)∗ = RΓ(S3;−).

Now if this were the total derived functor, we would have

Rp∗(ZS2 ⊕ ZS2 [−1]) = Rp∗(ZS2)︸ ︷︷ ︸
C∗(S2;Z)

⊕Rp∗(ZS2)[−1]︸ ︷︷ ︸
C∗(S2;Z)[−1]

,

and upon taking cohomology of this complex, we get

H∗(Rp∗(ZS2 ⊕ ZS2 [−1])) = Z⊕ Z[−1]⊕ Z[−2]⊕ Z[−3].

But H∗(S3) = Z⊕ Z[−3], and so

Rf∗(ZS3) 6' ZS2 ⊕ ZS2 [−1].

Remark A spectral sequence calculation relates H∗(S3) and H∗(Rp∗(ZS2 ⊕ ZS2 [−1])). The calculation
makes transparent how the degree 1 and 2 Z terms are killed off.

4.1. Compactly supported sections. Define the compactly supported sections functor by

Γc(X;−) : Sh(X)→ Ab

Γc(X; F ) = {s ∈ Γ(X; F ) | supp(s) ⊆ K ⊆ X for some compact K}

where

supp(s) := {x ∈ X | sx ∈ Fx is nonzero}.

Exercise 4.1. Show that supp(s) is closed.

Γc is left exact, so we can consider its right derived functors which we call the compactly supported cohomology
of F :

RiΓc(X; F ) = Hi
c(X; F ).

Example 35. If X is compact, then Γc(X;−) = Γ(X;−).

Example 36. If X = Rn, Γc(X;ZRn) = 0.
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Given f : X → Y we can define

f! : Sh(X)→ Sh(Y )

by

f!(F )(V ) =

{
s ∈ F (f−1(V ))

∣∣∣∣∣ supp(s) ⊆ f−1(V ), and

supp(s)
f |supp(s)−−−−−→ V is proper

}
.

(Recall that a map is proper if the preimage of a compact set is compact.)

We should assume some ‘niceness’ properties – e.g. Hausdorff, etc. We would need to change our notion of
properness to work with, e.g. the Zariski topology for a variety.

Example 37. If Y is a point, f! = Γc

Observe that

a) If i : Z ↪→ X is a closed embedding, then i is proper.
b) If j : U ↪→ X is an open embedding, then j is not proper.

Example 38.

C× C

D× D

open emb.

open emb.

closed emb.

4.2. Summary of induced functors so far. A map f : X → Y induces:

f∗ : Sh(X) Sh(Y ) : f∗

right adjoint left adjoint (and exact)

Rf∗ : D+Sh(X) D+Sh(Y ) : f∗

right adjoint left adjoint (no need to derive)

f! : Sh(X) Sh(Y )

Rf! : D+Sh(X) D+(Sh(Y ))

We call f! the pushforward/direct image with proper supports.

Example 39. If Y = pt, then

• Rf∗ = RΓ(X;−).
• Rif∗ = Hi(X;−).
• Rif! = Hi

c(X;−).

4.3. Computing derived functors. Let j : U ↪→ X be an open embedding, and let G ∈ Sh(U). Then

j!(G )(V ) = {s ∈ Γ(U ∩ V ; G ) | supp(s) ↪→ V is proper}.
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Figure 14. Defining and computing !-pushforward.

Observe that supp(s) ↪→ V is proper iff supp(s) is closed in V .

Let’s try and compute the stalk of this sheaf. For x ∈ U we can always find V ′ ⊂ U containing x; thus the
condition supp(s) ↪→ V ′ is proper is vacuous (since s ∈ Γ(U ∩ V ′; G ) = Γ(V ′; G ). Thus the stalk at x is just
Gx, the stalk of G at x.

Now consider x̃ ∈ U , X 3 x̃.

Γ(V ; j!G ) = {s ∈ G (V ∩ U) | supp(s) ↪→ V is closed}.
Given such an s we can take x̃ ∈ V ′ ⊆ V such that V ′ ∩ supp(s) = ∅ (this probably requires our space to be
Hausdorff).

Figure 15. Separating V ′ and supp(s).

Then
s 7→ 0 ∈ (j!G )x̃.

We summarize:

(j!G )x =

{
Gx if x ∈ U,
0 if x /∈ U.

We call this extension of G by 0.

Now, it is clear that j∗j!G ' G . What about j!j
∗F? There is a map j!j

∗F → F given on open sets V by
taking a section on F (U ∩ V ) and extending by 0 to all of V .

Proposition 4.1. j! is left adjoint to j∗.
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The counit of the adjunction is j!j
∗F → F , and the unit of the adjunction is G → j∗j!G . I.e. we have

Hom(j!G ,F ) ' Hom(G , j∗F ).

To move between the unit/counit and Hom description of the adjunction, take e.g.

Hom(j!G , j!G ) Hom(G , j∗j!G

unit id

∼

Remark The functor j! is exact (since it is exact on stalks by our earlier calculation).

Remark This adjunction and exactness is only for open embeddings!

4.4. Functoriality. Consider

X Y

pt

f

p

We want to compute H∗(X; f∗G ). We have

RΓ(X; f∗G ) Rp∗ ◦Rf∗(f∗G ) Rp∗(G )

RΓ(Y ; G )

use adj.

So for example, if G = ZY , then we have a map

H∗(Y ;Z)→ H∗(X;Z).

What about for compactly supported cohomology? We can try and do the same trick. Assume f is proper.
Then Rf∗ ' Rf!, so we can run the same argument as above to get maps

H∗c (X; G )→ H∗c (X; f∗G ),

which are given by

RΓc(X; f∗G ) Rp! ◦Rf!(f
∗G ) Rp! ◦Rf∗(f∗G ) Rp∗(G )

RΓ(Y ; G )

∼
f proper

Example 40. Consider the open embedding

C× C

R2 − {0} R2

j

We understand j!(ZC×) – it is constant away from 0, and has no sections on sets containing 0. Now we claim

j∗ZC× = ZC.

Letting U be a small ball around 0. Then this follows from

(j∗ZC×)(U) = ZCC×(U ∩ C×) ∼= Z.

j∗ is not exact, so let’s compute its derived functor:

Rj∗(ZC×) = j∗(C
•,sing
C× )(U) = C•,sing(U ∩ C×).

U ∩ C× ' S1, so taking cohomology gives Z in degrees 0 and 1. Now, we have the cohomology sheaves

R0j∗(ZC×) = ZC, R1j∗(ZC×) = Z0,
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where we observe that we have a skyscraper sheaf at 0 since there is no first cohomology on contractible sets
not containing 0.

4.5. Open-closed decomposition. Now, consider j : U ↪→ X ←↩ Z : i where Z = X − U .

Exercise 4.2. The sequence

0→ j!j
∗F → F → i∗i

∗F → 0

is exact. (Hint: It is easy to check exactness on stalks.)

Think: “The sheaf F is built up from its restriction to open and closed complementary subsets.”

Apply RΓc(X;−) to the above SES:

RΓc(X; j!j
∗F ) RΓc(X; F ) RΓc(X; i∗i

∗F )

R(pU )!(j
∗F ) R(pX)!j!j

∗F R(pX)!i∗i
∗F

R(pX)!i!i
∗F R(pZ)!(i

∗F )

where

U X X Z

pt pt

j

pU
pX pX

i

pZ

Then we obtain a LES

H∗c (U ; j∗F )→ H∗c (X; F )→ H∗c (Z; i∗F ),

which we call the LES in compactly supported (CS) cohomology.

Example 41. j : Rn ↪→ Sn ←↩ pt : i, with F = ZSn . Since pt and Sn are compact (and we assume n ≥ 1),
we find that the LES in CS cohomology for ZSn is:

0 0 0

Hn
c (Rn;Z) Hn(Sn;Z) ∼= Z 0

0 0 0

...
...

...

0 0 0

H0
c (Rn;Z) H0(Sn;Z) ∼= Z H0(pt Z) ∼= Z

∼

∼

So

H∗c (Rn;Z) =

{
Z, if ∗ = n,
0 else.

In particular, observe that H∗c is not a homotopy invariant – it can distinguish between Rn of different
dimensions.

Notation: If j : U → X, write FU for j!j
∗F .

If X = U1 ∪ U2 with both Ui open, we have a SES of sheaves

0→ FU1∩U2

(+,+)−−−−→ FU1 ⊕FU2

(+,−)−−−−→→ 0.

This gives rise to another LES, the Mayer-Vietoris sequence in CS cohomology.
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Next, given j : U ↪→ X ←↩ Z : j, consider the exact sequence

0→ ΓZF → F → j∗j
∗F =: ΓUF ,

where

(ΓZF )(V ) = {s ∈ F (V ) | supp(s) ⊆ Z}.
ΓZ is always left exact, but is not exact in general. So we can derive

RΓZ : D+Sh(X)→ D+Sh(X).

There is another functor

RΓZ(X,−) : D+Sh(X)→ D+(Ab),

which we call the local cohomology.

5. Verdier Duality.

Start with a map of topological spaces f : X → Y . So far we have seen the following solid arrows:

D+Sh(X) D+Sh(Y )

Rf∗

Rf!

f∗

f!

Natural question: Does the dashed adjoint exist?

Example 42. If U ↪→ X is an open embedding, we have seen that j! a J∗ a Rj∗, (a means “is left adjoint
to”). So in this case j! = j∗.

Example 43. If i : Z ↪→ X is a closed embedding,

i∗ a i∗ ' i! a i∗ΓZ ,

where i∗ ' i! since i is proper, i∗ is exact, and ΓZ is left exact. Thus we can right derive to get

i! = i∗RΓZ .

Remark We have seen that previously the functors f∗, Rf!, etc on D+(A) are induced from functors on A
by (right) deriving. In general, f ! is only defined in the derived category – it is not derived from the original
categories.

For now, let us simplify by considering sheaves of rational vector spaces, D+ShQ(−). (This is a simplification
since all Q vector spaces are injective.)

In general: We want Rf! a f !.

Remark If f is proper, Rf∗ ' Rf!.

5.1. Dualizing complex. Consider p : X → pt. What is the “dualizing complex” p!(Q) = ω•X?

We haven’t constructed it yet, but let us deduce some of its properties. Unless otherwise stated, HomX =
HomD+(Sh(Z)). We will have

RHomX(F , ω•X) = RHomX(F , p!Q) ' RHomQ(Rp!(F ),Q) = RΓc(X; F )∨,

where we are thinking of Q as a complex concentrated in degree 0, and −∨ denotes the dual complex of
vector spaces.
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Remark RHom(A•, B•) means the cochain complex Hom•(A•, I•) where I• is an injective resolution of B•.
I.e.

Homn(A•, I•) =
⊕
i

Hom(Ai, In+i), which we can visualize as

...
...

A2 B2

A1 B1

A0 B0

A−1 B−1

...
...

In the above, orange arrows are degree 0 homs, blue arrows are degree 2 homs, and the black arrows denote
the differential we can put on this graded vector space such that

H0(Hom•(A•, I•)) = Hom(A•, I•).

Remark The RHom adjunction should follow from the Hom adjunction by the universal property of R.

Example 44. Let F = QX = p∗Q where p : X → pt. Then

RHomX(QX ;ω•X) = RHomQ(Q,RΓ(X;ω•X)) = RΓ(X;ω•X)

by the p∗ adjunction, and

RHomX(QX ;ω•X) = RΓc(X;Q)∨ = C∗c (X;Q)∨

by the (desired) p! adjunction. Be aware that C∗c is a cochain complex that is not necessarily bounded below.

Remark If A• is a cochain complex of vector spaces, i.e.

· · · → Ai → Ai+1 → Ai+2 → · · · ,

when we dualize we can either consider this as a chain complex, or we can relabel,

((A•)∨)i = (A−i)∨,

so that (A•)∨) is a cochain complex. In this class, unless explicitly stated, all complexes are cochain complex.

Remark For X finite dimensional, RΓ(X;ω•X) is bounded above. Thus, in general, if X is infinite dimen-
sional the !-pushforward does not exist (since we used this to get C∗c (X;Q)∨ = RΓ(X;ω•X)).

We define Borel-Moore chains on X to be

CBM
∗ (X;Q) := C∗c (X;Q)∨.

Example 45. Let F = QU = j!QU for j : U ↪→ X an open subset. Then

RΓ(U ;ω•U ) = RHom(QU ;ω•X) = C∗c (U ;Q)∨,

where ω•U = ω•X |U .

We have an assignment (
Open set U

in X

)
7→
(

Cochain complex
C∗c (U ;Q)∨

)
.
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Think of this as a presheaf in cochain complexes:

U ↪→ V C∗c (U ;Q) ↪→ C∗c (V ;Q)

C∗c (U ;Q)∨ ← C∗c (V ;Q)∨

If we were working fully homotopically, we could take this as a definition.

But, as written we have a problem – an object in the derived category is an equivalence class of complexes.To
make sense of this, we would need a homotopical version of a sheaf (an ∞-stack).

5.1.1. What is ω•X? Let I • be the Godement resolution of QX ,

I 0 =
∏
x∈X

QX .

Definition 19 (Tentative). ωiX(U) = Γc(U ; I −i)∨ (so the dualizing sheaf is concentrated in negative degrees
– it is a not necessarily bounded below complex).

We now have the meaning/interpretation

RHomX(QX , ω•X) ∼= RΓ(ω•X) = Γc(X; I −•)∨ ∼= RΓc(X;Q)∨

where the final isomorphism is because I resolves the constant sheaf.

We need the following assumption: X is finite dimensional.

dim(X) := max{n | ∃F ∈ Sh(X), Hn
c (X; F ) = 0}.

Fact: If X = Rn, dimX = n.

Another fact: Define K • ∈ D+Sh(X) by

K i :=

 I • if i < n,
im (I n−1 → I n) if i = n,
0 if i > n.

If dim(X) = n, then K • is a soft resolution of QX .

Recall: F is soft if for every Z ⊆ X closed, Γ(X; F ) → Γ(Z; F ) is surjective. Soft sheaves are acyclic for
Γc.

Upshot: If X is finite dimensional, we can find a finite soft resolution of QX .

Definition 20. ωiX ∈ Sh(X) is given by

ωiX(U) = Γc(U ; K −i)∨.

With the above definition and the finite dimensionality assumption,

ω•X ∈ D+(Sh(X)).

Now, let’s look at homology complexes.
preH i(ω•X)(U) = Hi(Γc(U ; K •)∨)

= Hi(C∗c (U ;Q)∨)

= H−ic (U ;Q)∨

where the final equality uses the rationality assumption (i.e. that we are dealing with vector spaces). In
particular, on stalks we have

H i(ω•X)x =
colim−−−→
U3x

H−ic (U ;Q)∨ = H−ic (U ;Q)

where the final equality holds for small enough U and nice enough X.
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Main point: If X = Mn is a topological n-manifold, then

H −n(ω•X) is a locally constant sheaf.

Why? For charts U ∼= Rn,
H −n(ω•X)(U) = Hn(U ;Q)∨ = Q.

Definition 21 (Orientation). H −n(ω•X) = OrX , is called the orientation sheaf of X. We say that X is
orientable if OrX ∼= QX .

So: If X = Mn is a compact, oriented manifold, we claim that

Hi(X;Q) ∼= Hn−i(X;Q),

and in particular
bi(X) = bn−i(X) (equality of Betti numbers).

Summary of properties (so far):

(1) H −i(ω•X) is the sheafification of

U 7→ Hi
c(U ;Q)∨ = HBM

i (U ;Q) := H−i(U ;ω•U ).

The constant sheaf represents cochains; we can think of the dualizing complex ω•X as representing
Borel-Moore chains, i.e. “locally finite” (e.g. singular) chains.

(2) RHom(F •, ω•X) ' RΓc(X; F )∨.

Example 46.

Hi
c(Rn;Q) =

{
Q, i = n
0 otherwise

}
= HBM

i (Rn;Q).

Figure 16. A Borel-Moore 1-cycle in R2.

For instance:

• HBM
2 (R2;Q) ∼= Q, generated by all of R2, a locally finite sum of 2-simplices.

• HBM
0 (R2;Q) = 0, since any point is the boundary of a ray headed out to ∞ (as per Figure 16).
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If X is a topological n-manifold, then

H −i(ω•X) = 0 if i 6= n,

and

H −n(ω•X) is locally constant.

Define the orientation sheaf to be

OrX := H −n(ω•X).

We say that X is orientable if OrX ' QX .

5.2. Poincaré Duality. If X is orientable,

HBM
i (X;Q) := H−i(X;ω•X) ∼= H−i(X;QX [n]) ∼= Hn−i(X;Q).

The isomorphism HBM
i (X;Q) ∼= Hn−i(X;Q) is called the Poincaré Duality isomorphism (PD). If X is

compact this recovers the (potentially) more familiar statement of Poincaré Duality, since then HBM
∗ = H∗.

Remark HBM
i (U ;Q) = H−i(U ;ω•U ) = H−i(ω•X(U)).

5.2.1. Why is PD true? There are two types of “sheaves” (up to homotopy),

U 7→C∗(U ;Q) ∼ QX
U 7→C∗c (U ;Q)∨ = CBM

∗ (U ;Q) ∼ ω•X .

A priori, these are two different (pre)sheaves. But if they agree on a basis of open sets, they must agree
everywhere.

So on a manifold we can check these agree (up to a shift) locally on X, via the computation on Rn.

Example 47. RP2 and the Möbius strip are non-orientable. π1(RP2) = Z/2Z, and OrRP2 is the local system
corresponding to the non-trivial representation of Z/2Z.

5.3. Borel-Moore homology.

Example 48. Consider the singular space shown in Figure 17.

Figure 17. The ‘figure 8’ singular space.

Away from the singular point, we have

H −i(ω•X)y =

{
Q, i = 1,
0, i 6= 1.

Locally around the singular point x, the space looks like the set U of Figure 18.
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Figure 18. Local model around the singular point of the figure 8.

So,
H −i(ω•X)x = HBM

i (U ;Q).

How can we compute this Borel-Moore homology? In general there is a Mayer-Vietoris sheaf SES,

0→ FZ1∪Z2 → FZ1 ⊕FZ2 → FZ1∩Z2 → 0.

So we have a SES of sheaves

0→ QZ1∪Z2
→ QZ1

⊕QZ2
→ QZ1∩Z2

→ 0.

Apply the functor RΓc:

H1
c (Z1 ∪ Z2) H1

c (Z1)⊕H1
c (Z2) 0

H0
c (Z1 ∪ Z2) H0

c (Z1)⊕H0
c (Z2) H0

c (Z1 ∩ Z2)

Since Zi ∼= R and Z1 ∩ Z2 = pt, we have H1
c (Zi) ∼= Q, H0

c (Z1 ∩ Z2) ∼= Q, and H0
c (Zi) = 0. Hence we get a

SES
0→ Q→ H1

c (Z1 ∪ Z2)→ Q2 → 0,

and so
H1
c (U) ∼= Q3.

We can see this HBM
1 as generated by the three ‘V’ shaped cycles in Figure 19.

Figure 19. Borel-Moore generating 1-cycles for U .
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So we can now see in Figure 20 that H i(ω•X) is somehow measuring singularities in our space.

Figure 20. Stalks of the cohomology sheaf of ω•X .

Exercise 5.1. Think about the restriction maps for this example.

Example 49. Think of the cone with open ends, as in Figure 21.

Figure 21. Borel-Moore homology of the cone with open ends.

Away from the singular point, the stalk of H ∗(ω•X) is Q[2], since there the cone is locally a 2-manifold.
Around the singular point, we have that locally the manifold looks again like all of X – so here we need to
calculate HBM

∗ (X;Q). We have

HBM
∗ (X;Q) =

{
Q2, ∗ = 2 (generated by the upper and lower cones),
Q, ∗ = 1 (generated by the line in Figure 21).

This is a rough geometric argument – we could also decompose and use a LES argument as we did in the
previous example.
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More generally, if f : X → Y , we want to define

f ! : D+Sh(Y )→ D+Sh(X).

If K ∈ Sh(X) is a soft sheaf, and F ∈ Sh(Y ) is injective,

f !
K (F ) = Hom(f!(K ,F ).

Then define

f !(F ) = (f !
K n(F )→ f !

K n−1(F )→ · · · → f !
K 0(F )),

where the first term is in degree −n, the final term is in degree 0, and QX → K is the finite (length n) soft
resolution as given before. By definition,

ω•X = f !(Q) when Y = pt.

Proposition 5.1. RHom(Rf!(G ),F ) ' RHom(G , f !(F )).

Proof. See [KS]. �

Warning! There is a condition on defining f !: X and Y must both be finite dimensional.

Definition 22. ωX/Y := f !(QY ).

5.3.1. Topological submersions. We saw (Poincaré Duality) that something nice happened with ωX for X a
manifold. What is a similarly nice situation here?

Definition 23. f : X → Y is a topological submersion of relative dimension d if for all x ∈ X there exists
open U ⊂ X with x ∈ U , such that

U f(U)× Rd

f(U)

∼=

and f(U) is open in Y .

Remark This is strictly stronger that just having manifolds for fibres.

Example 50. R x2

−→ R is not a topological submersion (it fails at 0).

Proposition 5.2. If f is a topological submersion of relative dimension d, then

H −d(ωX/Y ) =: OrX/Y is a local system,

H −i(ωX/Y ) = 0 for i 6= d.

We say that X/Y is orientable iff OrX/Y ' QX . In that case,

f !(−) ' f∗(−)[d].

In general: for any f ,

f !(−) ' f∗(−)⊗ ωX/Y .

6. The 6-functor formalism.

We have functors Rf∗, Rf!, f
∗, f !,−⊗Q −, RH om(−,−). These give rise to 4 kinds of (co)homology.

(1) H∗(X;Q)︸ ︷︷ ︸
H∗(X)

= Rp∗p
∗(Q) (ordinary cohomology)

(2) H∗c (X) = Rp!p
∗(Q) (compactly supported cohomology)



Spring 2015 Topics in D-modules. 39

(3) HBM
−∗ (X) = Rp∗ p

!(Q)︸ ︷︷ ︸
ωX

(Borel-Moore homology)

(4) H−∗(X) = Rp!p
!(Q) (ordinary homology)

BM homology and ordinary homology use Verdier duality. Once way of thinking about this – Verdier duality
gives a way to build a cosheaf from a sheaf, and we take homology of a cosheaf.

Unless explicitly stated we assume X is locally compact and finite dimensional.

6.1. Functoriality from adjunctions. f : X → Y gives a unit map

1D+(Y ) Rf∗f
∗,

QY Rf∗(Q(X))

which gives a map

RΓ(QY ) = H∗(Y )→ H∗(X) = R(pY )∗Rf∗︸ ︷︷ ︸
R(pX)∗

(QX)

where
X Y

pt

pX pY

Similarly, there is a counit map

Rf!f
! 1D+(Y )

Rf! f
!(ωY )︸ ︷︷ ︸
ωX

ωy

Applying R(pY )! gives

H−∗(X) = R(pY )!(Rf!(ωX))→ R(pY )!(ωY ) = H−∗(Y ).

I.e.:

• H∗ is contravariant.
• H∗ is covariant.
• H∗c :

– For an open embedding j : U ↪→ X, j! ' j∗, i.e. j∗ is right adjoint to j!, and so H∗c is covariant.
– For a proper map f : X → Y , f! = f∗, and so H∗c is contravariant.

• HBM
∗ is essentially opposite to H∗c .

If f : X → Y is a topological submersion of relative dimension d, and

OrX/Y (= H −d(ωX/Y )) ' QX ,

then

f !(−) ' f∗(−)[d] and so f ![−d] ' f∗.
Thus,

1D+(Y ) → Rf∗f
∗ ' Rf∗f ![−d].

Apply to ωY :

ωY → Rf∗ f
!(ωY )︸ ︷︷ ︸
ωX

[−d] = Rf∗(ωX)[−d],

so applying R(pY )∗, we have

R(pY )∗(ωY )→ R(pY )∗Rf∗︸ ︷︷ ︸
R(pX)∗

(ωX)[−d],
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and so taking cohomology gives
HBM
−∗ (Y )→ HBM

−(∗+d)(X).

Example 51. If Y = pt (i.e. X is an orientable manifold),

Q = HBM
0 (pt) HBM

d (X) (we are using homological grading here)

1 [X] (the fundamental class)

So we should think of this map as relating to some relative fundamental class.

Note that for and open-closed decomposition j : U ↪→ X ←↩ Z = X − U : i, U open, we have an exact
sequence of functors

0→ j!j
∗ → 1Sh(X) → i!i

∗ → 0

on the level of abelian categories; so exact sequences of sheaves for any F ∈ Sh(X)

0→ j!j
∗︸︷︷︸

j!j!

(F )
counit−−−−→ F

unit−−→ i!i
∗︸︷︷︸

i∗i∗

(F )→ 0.

Now apply R(pX)!(−) to get a SES of complexes, thus a LES in compactly supported cohomology.

Example 52. If F = QX we have

H∗+1
c (U) · · ·

H∗c (U) H∗c (X) H∗c (Z)

This gives rise to a distinguished triangle in D(X),

Rj!j
∗ → 1D(X) → Ri!i

∗ +1−−→ · · ·
Note that if we take R(pX)∗ we have a different interpretation,

H∗(X,Z)︸ ︷︷ ︸
relative cohomology

H∗(X) H∗(Z).

So:

• H∗ of the decomposition deals with relative cohomology.
• H∗c (X) is built up out of H∗c (U) and H∗c (Z).

We also have another distinguished triangle,

Ri∗i
!(F )→ F → Rj∗j

!(F )
+1−−→ · · ·

which gives rise to a LES in Borel-Moore homology

HBM
∗ (Z)→ HBM

∗ (X)→ HBM
∗ (U).

Definition 24. The Euler characteristic of X is

χ(X) =
∑

(−1)i dim(Hi
c(X)).

Note that using H∗c means that by the H∗c LES,

χ(X) = χ(U) + χ(Z),

i.e. additivity of the Euler characteristic under the open-closed decomposition U ↪→ X ←↩ Z.

Proposition 6.1. If i : Z ↪→ X is a closed submanifold of codimension d, and the normal bundle NZ/X is
orientable, then

i!(QX) ' QZ [−d].
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Figure 22. Tubular neighbourhood N of Z in X.

Proof. Let N be a tubular neighbourhood of Z in X as in Figure 22. Then

Z N X

NZ/X

i0

i

∼=π

π is a topological submersion which in orientable. So i!(QX) = i!0(QN ), and we have reduced to working on
a vector bundle.

i!0(QN ) = i!0(π∗QZ) = i!0π
!QZ [−d] = QZ [−d]

since i!0π
! = id, as i0 is a section of π. Thus,

i!(QX) = QZ [−d].

�

This leads to the following:

i!i
!QX QX

i∗QZ [−d] QX
Now apply Rp∗ to this to get a Gysin map (or wrong way map)

H∗−d(Z)→ H∗(X).

But we have the distinguished triangle given by

i!i
!QX → QX → j∗j

∗QX ,
which gives rise to a Gysin LES

H∗−d(Z)→ H∗(X)→ H∗(U)
+1−−→ · · · .

6.2. Base change. Suppose we have the cartesian square of a fibre product

X ×Z Y Y

X Z

f̃

g̃ g

f

Then:
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(1) g∗f! ' f̃!g̃
∗ : Sh(X)→ Sh(Y ) on the level of abelian categories; there is thus also the derived version

g∗Rf! ' Rf̃!g̃
∗.

(2) g!Rf∗ ' Rf̃∗g̃!.

Example 53. Y = pt
x−→ X gives

Rf!(F )x = RΓc(f
−1(x); F ).

Note:

• If f is proper, f∗ = f!.
• If f is an open embedding, f ! = f∗.
• If f is a topological submersion, f ! ' f∗[d].

So in these (and other) cases we get interesting base change results.

7. Nearby and vanishing cycles.

Want to study the topology of singular varieties, e.g.,

X0 = f−1(0), where f : X → C is a proper holomorphic map.

Here X is a (smooth) complex manifold. Think of X as a parametrized collection of varieties (the fibres), all
compact since f is proper. Some fibres, such as X0, may be singular – see Figure 23 for an example.

Figure 23. Family over C with singular fibre at 0.

Assume 0 ∈ C is an (isolated) singular value, i.e. X0 is singular. Then f |f−1(∆∗) is a submersion, where
∆ ⊂ C is a small disk and ∆∗ = ∆− {0}.

Example 54. f(x, y) = y2 − x3 − x2 has partial derivatives

∂f

∂x
= 3x2 − 2x,

∂f

∂y
= 2y,

so df is onto except for at (x, y) = (0, 0); this is the pinch point.
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For f proper, Ehresmann’s theorem implies that f |f−1(∆∗) is a locally trivial fibre bundle, i.e. for all t ∈ ∆∗,
there exists a neighbourhood U of t such that there is a diffeomorphism

f−1(U) Xt × U

U

∼=

Let’s think about H i := Rif∗(QX). Recall that the stalk

H i
t = Hi(Xt) (this equality uses proper base change).

H i|∆∗ is a locally constant sheaf, so there is an automorphism

T : H i
t1

∼=−→H i
t1 ,

where t1 ∈ ∆∗ is a choice of basepoint. T comes from a geometric monodromy (from Ehresmann’s theorem)

Xt1

∼=−→ Xt1 .

Choosing a path from t to 0 and flowing along it, we also obtain a specialisation map

rt : Xt → X0.

This induces

H∗(X0)→ H∗(Xt)

via the restriction map

H i
0 = H i(U)→H i(V ) = H i

t

where U, V are as in Figure 24.

Figure 24. Restriction to an open away from the singular point.

Write r ≡ rt and define

ψf := Rr∗(QXt),
which, up to a shift, is the same as

ψ!
f := Rr∗(ωXt).

So we have a complex of sheaves ψf ∈ D+(X0), and

H∗(X0;ψf ) = H∗(Xt).

Similarly,

H∗(X0;ψ!
f ) = HBM

∗ (Xt).

We can also look at stalks. Consider the zoomed in picture around the singular fibre (Figure 25).
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Figure 25. Milnor fibre around a singular point.

Then

(ψf )x = H∗(Milf,x),

where the Milnor fibre is

Milf,x = Bx,ε ∩Xt

where ε > |t| > 0 are small enough, and Bx,ε is a ball of radius ε around x.

Why? Unpacking definitions, using that r is proper, and using base change,

(ψf )x = H∗(r−1(x));

then finally observe that r−1(x) is the Milnor fibre up to homotopy (compact core of Milnor fibre).

So ψf is a sheaf on X0 that tells us about the cohomology of nearby fibres.
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If x ∈ X0 is nonsingular, r−1(x) is a single point, so that

(ψf )x ∼= H∗(r−1(x)) ∼= Q.

I.e. the Milnor fibre Milf,x is contractible if x is nonsingular.

The monodromy map gives us a map of sheaves

T : ψf → ψf .

If we take

X ∩Bx,ε → ∆ε := f(X ∩Bx,ε),
then over ∆∗ε we have a fibre bundle with generic fibre Milf,x. We call this the Milnor fibration. See [M] for
an original reference.

Facts: If x ∈ X0 is an isolated singularity (no matter how terrible),

Milf,x '
∨
µ(x)

Sn,

the wedge of µ(x) n-spheres where n = dimC(X0). We call µ(x) the Milnor number.

Define φf as follows: there is a unit map

QX0 → ψf = R(rt)∗(r
∗
tQX0)

and this corresponds to the specialisation map

H∗(X0)
sp−→ H∗(Xt).

Define φf = cone(sp). I.e. we have an exact triangle in D+(X0)

QX0
→ ψf → φf

+1−−→ · · ·

So there is a LES in cohomology

H∗(X0)→ H∗(Xt)→ H∗(X0;φf ),

as well as a local version

H∗(X0 ∩Bε,x)→ H∗(Milf,x)→ H∗(φf,x).

Alternatively, we could use ψ! to get

φ!
f ψ!

f ωX0

cone shifted by 1 Borel-Moore chains on nearby fibre Borel-Moore chains on singular fibre

so (φ!
f )x are the cycles in Milf,x which go to 0 under specialisation. We call this the vanishing cycles sheaf.

Example 55. If X has isolated singularities, φ!
f must be a sum of skyscraper sheaves supported at the

singular points,

φ!
f =

⊕
x∈X0

Qµ(x)
x [+n],

where this is implicitly 0 for nonsingular x.

Example 56. Want to compute the Milnor fibration for our example y2−x3−x2 at 0 ∈ C2 (i.e. studying the
collapse of the cylinders to a cone near 0). The Hessian is non-degenerate, so the Morse lemma (holomorphic
version) tells us we can change coordinates to

f(u, v) = uv : C2 → C.
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Figure 26. Picture of f−1(z) (f(u, v) = uv) around the singular point 0.

We want to compute the monodromy for Xt
∼= C× for t 6= 0 – we make this identification via the map

z 7→
(
z,
t

z

)
.

We also have X0 = C
∏

0 C. Then flowing along a lift of ∂
∂θ downstairs,

Tθ : X1 → Xeiθ , Tθ(u, v) =
(
e
iθ
2 u, e

iθ
2 v
)

is the parallel transport map. In particular,

T2π : X1 → X1

T2π(u, v) = (−u,−v)

is the antipodal map. So the local monodromy is the identity, since on an odd-dimensional sphere the
antipodal map is a rotation,

T : H∗(X l
1)

id−→ H∗(X l
1).

What about the global monodromy? See Figure 27.
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Figure 27. Global monodromy for X1.

8. A preview of the Riemann-Hilbert correspondence.

8.1. C∞ Riemann-Hilbert. Let X be a C∞-manifold of dimension n. Consider the sheaf of rings C∞X on
X. Then there is a correspondence{

C∞X -vector bundles
on X

} {
Locally free sheaves

of C∞X -modules

}
(V → X) Γ(−, V )

(V M → X) M

We define the bottom map as follows. Given a locally free C∞X -module M , the trivializations

φM
i : M |Ui

∼−→ (C∞Ui )⊕r

give rise to transition functions

cMij = φi ◦ φ−1
j |Ui∩Uj ∈ C

∞(Ui ∩ Uj , GLn).

These can then be glued together to give a vector bundle

V M =

∐
i Ui × Cr

∼
There is another correspondence Locally constant

sheaves of
C-vector spaces


{

Vector bundles with
flat connection

}

F (C∞X ⊗CX F = M , dM (f ⊗ s) = df ⊗ s)

ker(dM ) (M , dM )

Remark • The data of the cMij determines a class in H1(X; C∞(−, GLn)).
• In the above, s is a local section of F and f is a local section of C∞X .
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• The data of a vector bundle with flat connection is equivalent to a class in Ȟ1(X,GLn) (locally
constant transition functions).

Given a flat vector bundle (M , dM ), define

dR(M )• = M
dM

−−→M ⊗C∞X
A 1
X

dM

−−→M ⊗C∞X
A 2
X

dM

−−→ · · · d
M

−−→M ⊗C∞X
A n
X ,

where A i
X are the smooth i-forms on X, and we extend dM via the Leibniz rule.

Proposition 8.1. 0→ ker(dM )→ dR(M )• gives a quasi-isomorphism.

Proof. Can check exactness locally, and then this is immediately implied by the Poincaré lemma. �

Corollary 8.2. H∗(X; ker(dM )) = H∗(Γ(dR(M )•)) = H∗dR(M , dM ).

Proof. Use that the sheaves M ⊗C∞X
A m
X are fine (thus soft, thus acyclic). �

8.2. Complex geometry. Now suppose X is a complex manifold, dimCX = n. Write

• OX for the sheaf of holomorphic functions, and
• ΩmX for the sheaf of holomorphic m-forms.

We get a correspondence Locally constant sheaves
of C-vector spaces

(locally free CX -modules)




Holomorphic vector bundles
with flat connection

dM : M →M ⊗OX Ω1
X


F (OC ⊗CX F = M , dM (f ⊗ s) = ∂̄f ⊗ s)

ker(dM ) (M , dM )

Remark OX -modules are not acyclic for Γ(X;−).

Example 57. If X ↪→ CPN is projective, then X is an algebraic variety, and

Coherent OX -modules Coherent Oalg
X -modules∼

Example 58. If X is Stein, X ↪→ CN , then coherent OX -modules are acyclic.

Definition 25. An OX -module M is called coherent if

(1) it is finitely generated as an OX -module, (i.e. for each x ∈ X there exists a neighbourhood U 3 x
and O⊕rU �M |U ); and,

(2) for each U ⊆ X open and any

φ : (OX |U )
⊕r →M |U ,

we have that ker(φ) is finitely generated.

Theorem 8.3 (Oka). OX is coherent as a module over OX .

Exercise 8.1. Compare to the smooth case: C∞X is not coherent as a C∞X -module.

Hint: Consider multiplication by the function

f(x) =

{
e−

1
x2 , x > 0,

0, x ≤ 0.

Remark Coherent OX -modules are the smallest subcategory of sheaves which
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(1) contains vectors bundles, and
(2) is closed under finite ⊕, kernels and cokernels.

Note that f∗ does not preserve O-modules.

Example 59. Flat connections on X = C× (i.e. locally constant sheaves). Every holomorphic vector bundle
on C× is trivial, so{

holomorphic flat connections
on C×

} {
square matrices of holomorphic 1-forms

A(z)dz

}
dA(s) = ds−Asdz A(z)

where dA is a connection on O⊕rX . We know that

{flat connections on C×} ' {Reps of π1(C×) ∼= Z} ' {vector space with an automorphism}.
So how do we determine the monodromy automorphism? Take A to be 1× 1 in what follows – in general the
ideas below require us to consider the path-ordered exponential.

Figure 28. Choice of path in C× for parallel transport.

Given a connection matrix A, let s0 ∈ Cr be a section at 1. We want to find s(t) such that dA(s) = 0, i.e.

s′(t) = A(γ(t))γ′(t)s(t), and s(0) = s0.

To solve this, write
s′

s
= A(γ(t))γ′(t),

and observe1 that the solution is given by

s(t) = exp

(∫ t

0

A(γ(t))γ′(t)dt

)
· s0.

Hence the monodromy automorphism is

s(2π) = exp

(∮
γ

Adz

)
· s0.

1One can motivate this solution by observing that the LHS is a log-derivative, so we expect naively to see

log

(
s(t)

s0

)
=

∫ t

0
A(γ(t))γ′(t)dt.
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Theorem 8.4 (Cauchy). The monodromy matrix is

M(z) = exp (Res0(A) · 2πi) .

I.e. we only need to look at connections of the form

B(z) =
Res0(A(z))

z
.

Exercise 8.2. It follows that every flat connection on C× is equivalent to one of the form d
B
z , B constant,

i.e.

d
B
z = d+

B

z
.

So, find an invertible matrix G(z) such that

B

z
= ±G−1AG±G−1dG,

where working out the correct signs is part of the exercise.

9. Constructible sheaves.

We now wish to understand a more general class of sheaves.

Definition 26. A partition P of a topological space X is a collection of disjoint, locally closed subsets of X,
Xi, such that ⋃

i

Xi = X.

Definition 27. A sheaf F ∈ Sh(X;C) is called constructible (w.r.t. P) if F |Xi is a locally constant sheaf
of finite rank.

Example 60. Let f : X → ∆ be a proper holomorphic map such that f |f−1(∆∗) is a submersion. Then

H i = Rif∗(CX) is a constructible sheaf on ∆ = ∆∗ ∪ {0}.

Definition 28. A complex F ∈ D+Sh(X;C) is called a constructible complex if H i(F ) is constructible for
each i.

Example 61. Let f : S3 → S2 be the Hopf fibration. Rf∗(CS3) is a constructible complex of sheaves w.r.t.
the trivial partition,

Rif∗(CS3) =

{
C, i = 0, 1,
0, else.

Recall that

Rf∗(CS3) 6∼= CS2 ⊕ CS2 [−1].

So,

D+
c,∅(S

2) 6' D+(Shc,∅(S
2)),

where D+
c,∅ means the bounded derived category of constructible complexes with respect to the empty par-

tition, and Shc,∅ means local systems.

Example 62. X = ∆ = ∆∗ ∪ {0}. Let a partition be given by P = {∆∗, {0}}, and choose nonzero t ∈ ∆.
What kind of data describes a constructible sheaf?

Let F ∈ Shc,P(∆), and let

V0 = F0, Vt = Ft.

We can consider small open sets to determine F0 and Ft,

V0 = Γ(U ; F ) = F (U)

Vt = Γ(V ; F ) = F (V )

where U and V are as shown in Figure 29.
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Figure 29. Obtaining a quiver from specialization maps.

So we get a quiver

V0

Vt

(restriction map) α

β (monodromy)

with the relation

βα = α (sections in Vt that extend to V0 must have trivial monodromy).

Fact: This data (representation of a quiver with given relation) is equivalent to the data of a contructible
sheaf.

10. Preliminaries on D-modules.

Let X be a complex manifold. An OX -module is a sheaf of modules for the sheaf of rings OX .

Definition 29. A D-module on X is an OX module M together with flat connections

dM : M →M ⊗OX Ω1
X

dM (f ·m) = df ⊗m+ f ⊗ dM (m), f ∈ OX ,m ∈M .

Let TX be the sheaf of holomorphic vector fields. For each vector field ξ ∈ TX ,

dM
ξ : M →M ,

and flatness means
dM
ξ dM

ν − dM
ν dM

ξ = dM
[ξ,ν] ∀ξ, ν ∈ TX .

Example 63. If x1, . . . , xn are local coordinates on X, then

∂i :=
∂

∂xi
∈ TX , [∂i, ∂j ] = 0,

and we have commuting operators
dM
∂i : M →M .

For now on we write ξ(m) or ξm instead of dM
ξ (m).

Let DX denote the subsheaf of rings of E ndCX (OX) generated by
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• multiplication by g ∈ OX ;
• TX acting by derivations.

DX is called the ring of differential operators.

In local coordinates, P ∈ DX looks like

P =
∑
α

fα(x)∂α1
x1
· · · ∂αnxn .

Fact: A D-module M is the same thing as a DX -module.

Definition 30. A stratification of X is a partition whose strata are manifolds (+ other conditions not listed
here).

Theorem 10.1. There is an equivalence{
Bounded constructible complexes for

some analytic stratification of X

}
Db

{
regular holonomic
DX-modules

}
dR(M ) M

Riemann-Hilbert correspondence

∼

Sitting inside of these categories we have

Dc(X;C) Db(DX-modrh)

Perv(X;C) DX-modrh∼

where the bottom left category is the category of perverse sheaves.

We would like to understand this correspondence.

10.1. Differential equations. A (linear) differential operator on X is

Pu = 0 where P ∈ DX .

Given P ∈ DX , define

MP = DX/DX · P, a left DX -module.

Warning! DX is non-commutative, so there is a distinction between right and left modules.

MP represents the following functor,

S 7→ {u ∈ S |Pu = 0};

S is thought of as a space of functions in which we might look for solutions. Or, more specifically, S is
some space of functions on X which is a DX -module.

Example 64. OX , SX the space of Schwarz functions, Sobolev spaces, etc.

Then

HomDX (MP ,S ) = {u ∈ S |Pu = 0}.

Example 65. X = C, coordinate z.

(1) P = ∂z gives the left D-module

MP = DX/DX · ∂z = OX .
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(2) For P = z, what is the D-module MP = DX/DX · z? Note that the D-modules MP are cyclic; i.e.
generated as a DX -module by one section u, the image of 1 in the quotient. So we can think of the
module as

MP = DX · u.
For instance, for the prior example, M∂z = DX · 1X , ∂z(1X) = 0. What about for this example? We
have

Mz = DX · u, z · u = 0.

We call this

u = δ(z), the δ-function.

For us, δ(z) is just the name for the generator of Mz, which satisfies z ·δ(z) = 0. You can make sense
of this with distributions if you want, but we won’t have to in this course.

Then Mz will be generated by

∂zδ(z) = δ′(z), . . . , ∂nz δ(z) = δ(n)(z), . . .

So

Mz = C〈δ, δ′, . . .〉 ∼= C[∂z],

i.e. the D-module of constant coefficient differential operators.
(3) DX · zλ with λ ∈ C. We won’t worry (yet) about troubles with solutions being multivalued. The

object zλ solves a differential equation,

∂z(z
λ) = λzλ−1

z∂z(z
λ) = λzλ

⇒ (z∂z − λ)zλ = 0.

If λ 6∈ Z, then

DX · zλ = DX/DX(z∂z − λ).

On C× this gives a flat connection

dM = d+
λ

2
dz

with monodromy e2πiλ. Why?

∂z(f(z)zλ) =
∂f

∂z
zλ +

λ

2
dz(zλ).

One can compute that the stalk at 0 is

(DXzλ)0 = 0.

10.2. The ring DX . We now wish to study the ring structure on DX ; recall from above that this is the sheaf
DX on a complex manifold X,

DX ⊂ E ndCX (OX).

which is generated by OX ⊂ E ndCX (OX) acting by multiplication, and TX = Der(OX ,OX) ⊂ E ndCX (OX).

Note: If θ ∈ TX , f ∈ OX , let [θ, f ] = θf − fθ. Then

[θ, f ](g) = θ(fg)− fθ(g) = θ(f)g + fθ(g)− fθ(g) = θ(f)g.

So

[θ, f ] = θ(f) ∈ OX ⊂ DX .

Definition 31. We say P ∈ DX has order ≤ m if P can be written as a sum of

θ1 · · · θl, θi ∈ TX , l ≤ m.
Define

DX(m) = {differential operators of order ≤ m}.

Proposition 10.2. [DX(m),DX(0)] ⊂ DX(m− 1). Observe that DX(0) = OX .
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Definition 32 (Alternative definition due to Grothendieck). Given a commutative C-algebra A, define a
C-algebra DA ⊆ EndC(A) as follows:

• DA(0) := A ⊆ EndC(A)
• DA(m) := {P ∈ EndC(A) | [P, f ] ∈ DA(m− 1) ∀f ∈ A = DA(0)}

Remark This definition makes sense for a sheaf of commutative CX -algebras A .

Example 66. If A = OX then DOX = DX . This is not hard, but not trivial. E.g. for m = 1 we suppose
P : OX → OX has the property [P, f ] ∈ OX . Then we claim that P − P (1) is a derivation.

Exercise 10.1. Prove the claim of the example.

Example 67. If A is the coordinate ring of a smooth affine algebraic variety Spec(A), we call DA the ring
of algebraic differential operators.

More generally:

• If Xalg is a smooth variety over C, then DXalg is a sheaf of rings in the Zariski topology.
• If Xalg is smooth, then DXalg is generated by OXalg and TXalg .
• But if X is singular this is no longer true in general.

Example 68. Let A = C[x1, . . . , xn]. Then

DC[x1,...,xn] =: Wn, the Weyl algebra.

This is a ring generated by symbols
x1, . . . , xn, ∂1, . . . , ∂n,

subject to the relations
[xi, xj ] = 0, [∂i, ∂j ] = 0, [∂i, xj ] = δij .

Example 69. Let
A = On := (OCn)0 =: C{{x1, . . . , xn}},

(think of as power series with positive radius of convergence). Define Dn := DOn , and note that at a point
x ∈ X a complex manifold,

(DX)x ∼= Dn after picking coordinates around x.

Remark There is a PBW type theorem for Dn,

Dn =
⊕
α

On · ∂α1
1 · · · ∂αnn︸ ︷︷ ︸

∂α, α=(α1,...,αn)

,

where ∂i = ∂
∂xi

. I.e. any P ∈ Dn has a unique expression of the form

P =
∑

fα(x)∂α.

The order of P as a differential operator is the weight

|α| = α1 + · · ·+ αn.

Proposition 10.3. (1) Dn is a filtered ring,

Dn(0) ⊆ Dn(1) ⊆ Dn(2) ⊆ · · · , and Dn(m)Dn(k) ⊆ Dn(m+ k).

Note that this is not graded, as the bracket can reduce the degree, e.g. [∂x, x] = 1.
(2) The associated graded ring of Dn is

Gr(Dn) :=

∞⊕
m=0

Dn(m)/Dn(m− 1).

The symbol maps are the quotients

σm : Dn(m)→ Dn(m)/Dn(m− 1) =: Gr(Dn)(m).
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This is graded,

Gr(Dn)(m) ·Gr(Dn)(k) ⊆ Gr(Dn)(m+ k).

Note that σ1(x∂x) = σ1(∂xx), for instance. Then we have that

Gr(Dn) = On[ξ1, . . . , ξn],

where ξi = σ1(∂i). Observe that this is a commutative ring, which is holomorphic in Cn and polyno-
mial in the dual space (Cn)∗.

(3) Define Dop
n to have the same underlying vector space as Dn, but with multiplication rule

P ·op Q := QP, P,Q ∈ Dop
n .

Then we have Dn ∼= Dop
n via the map

f ∈ On f ∈ On

∂i −∂i

a

a

so that ∑
α

fα(x)∂α 7→
∑
α

(−1)α∂αfα(x).

DX is also a filtered sheaf of rings,

Gr(DX) SymOX (TX) π∗OT∗X

sheaf of rings
holomorphic functions on T ∗X

which are polynomial in the fibres
holomorphic functions on T ∗X

where π : T ∗X → X.

To look up (if interested): There is also a ring EX of micro differential operators.

Proof. We prove the second claim of the proposition. Why is the associated graded commutative?

P ∈ Dn(m), Q ∈ Dn(k) implies [P,Q] ∈ Dn(m+ k − 1).

Thus,

σm(P )σk(Q)− σk(Q)σm(P ) = σm+k([P,Q]) = 0.

Then the PBW theorem implies that

Dn(m)/Dn(m− 1) ∼=
⊕
|α|=m

On · ξα1
1 · · · ξαnn .

�

With respect to the third part of the proposition: first recall that left Aop-modules are the same thing as
right A-modules. In general (e.g. X a complex manifold), we have that OX is a left DX -module. We also
have a holomorphic line bundle (locally trivial sheaf of OX -modules of rank 1), ΩnX .

Claim: ΩnX is naturally a right DX -module.

Motivation: Given η ∈ ΩnX , f ∈ OX , and ignoring for the moment the fact that we are working with
holomorphic top forms, consider the desired module structure∫

(η · θ)f =

∫
η(θ(f)), θ ∈ TX .

I.e. we want to define (η · θ) such that

(η · θ)(f)− η(θ(f)) is exact.

Definition 33. η · θ = −Lθ(η), the Lie derivative on top forms.
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Then

−Lθ(η) = −dιθ(η)− ιθ(dη) = −dιθ(η)

since η is a top form.

Claim: This defines a right D-module structure on ΩnX .

Proposition 10.4. There is an equivalence of categories

DX-mod Dop
X -mod

M ΩnX ⊗OX M

11. Algebraic geometry.

Let X be a complex manifold, OX the sheaf of holomorphic functions on X.

Definition 34. A closed subset Z ⊆ X is called analytic if Z is locally of the form

V (f1, . . . , fr) = {x | f1(x) = · · · = fr(x) = 0},

where f1, . . . , fr ∈ OX .

Given an analytic subset Z ⊆ X we define a sheaf of ideals

IZ = {f ∈ OX | f |Z = 0} ⊆ OX .

Note that IZ is coherent, since locally IZ = (f1, . . . , fr) (by definition).

Note also that IZ is radical, i.e. if fN ∈ IZ then f ∈ IZ . I.e.

IZ =
√

IZ = {f | fN ∈ IZ for some N > 0}.

Theorem 11.1 (Analytic Nullstellensatz).
coherent sheaves of

radical ideals

I =
√

I


{

closed analytic subsets
Z ⊆ X

}

I V (I )

IZ Z

∼

In fact, for any coherent ideal sheaf I ,

IV (I ) =
√

I .

The ring of germs of holomorphic functions at x ∈ X is OX,x – it is a noetherian local ring, with maximal
ideal the functions vanishing at x. Prime ideals in OX,x correspond to germs of irreducible analytic subsets
of X near x.

Given an OX -module F , define

supp◦(F ) := {x ∈ X |Fx 6= 0}.
and let supp(F ) be its closure. There is a sheaf of ideal Ann(F ) ⊆ OX ,

Ann(F ) := {f ∈ OX | f · s = 0 ∀s ∈ F}.

Proposition 11.2. If F is of finite type (locally finitely generated over OX), then

supp(F ) = V (Ann(F )).

In particular, it is an analytic subset.
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Proof. Suppose Fx = 0, i.e. x 6∈ supp(F ). Choose local generators s1, . . . , sr near x. Note that

Fx = 0 implies (s1)x = · · · (sr)x = 0.

So there exists some U 3 x such that F |U = 0. So,

Ann(F )|U = OU , and so V (Ann(F )|U ) = ∅.

In particular, x 6∈ V (Ann(F )). Conversely, if Fx 6= 0, take 0 6= sx ∈ Fx, f ∈ Ann(F ). Then fx · sx = 0
implies f(x) = 0 (since if f(x) 6= 0 then f is invertible on a neighbourhood of x, and fx would be invertible,
implying that sx = 0 – a contradiction). �

Example 70. Let X = ∆ = {|x| < 1}. Let F = OX/(xk). Then Ann(F ) = (xk),
√

Ann(F ) = (x), and
supp(F ) = V (x) = {0} ⊂ ∆.

Example 71. As above, but let

F ′ =

k⊕
i=1

OX/(x).

Both examples are skyscraper sheaves supported at zero with k-dimensional stalks, but the are not the same
sheaf.

Given an analytic set i : Z ⊆ X we get a sheaf of rings

i−1(OX/IZ),

where i−1 denotes the functor we previously had called i∗ (from here on out we adopt this change in notation).
Z is called a complex analytic variety, and decomposes as

Z = Zreg ∪ Zsing,

where the nonsingular points Zreg form a complex manifold. Z is said to be irreducible if whenever we express
Z as a union of analytic subsets

Z = Z1 ∪ Z2,

we either have Z = Z1 or Z = Z2.

Fact: Z = ∪iZi where the Zi are irreducible and the union is locally finite.

11.1. Cycle of a coherent sheaf. Suppose F ∈ Coh(X), the category of coherent sheaves, and Z is an
irreducible component of supp(F ). We define the multiplicity of F along Z, m(F ;Z) ∈ Z>0 as follows.
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Figure 30. Decomposition of the support into irreducible components.

Pick x ∈ Zreg (i.e. a smooth point). Then Fx is an OX,x-module, and p = IZ,x is a prime ideal in OX,x
(prime because x is regular in Z). Localize at IZ,x. Then Fx,p is an OX,x,p-module (i.e. invert everything
in OX,x − p). Recall that lengthA(M) is the length of the longest chain of submodules

M0 (M1 ( · · · (Mn = M.

Then we define

m(F ;Z) = lengthOX,x,p(Fx,p).

(Claim that this is independent of the choice of x.)

More explicitly: Fx has a filtration

0 = (Fx)0 ⊆ (Fx)1 ⊆ · · · ⊆ (Fx)k = Fx,

such that

(Fx)i/(Fx)i−1
∼= OX/pi

for some prime ideals pi ⊆ OX,x. Then

m(F ;Z) = number of times p appears as a pi.

In the algebraic setting, we can take ξZ the generic point of Z. Then localize at ξZ , to obtain FξZ as an
OX,ξZ -module. Then the multiplicity is the length of this module.

Definition 35. The cycle of F is

Cyc(F ) =
∑

Z⊂supp(F)

m(F ;Z) · [Z]

where the sum is locally finite, and is taken over the irreducible components of supp(F ). We can also define

Cycd(F ) =
∑

dim(Z)=d

m(F ;Z) · [Z].
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Finally, we define

md(F )x :=
∑

Z3x, dim(Z)=d

m(F ;Z).

Example 72. X = ∆, F = OX/(xk), Ann(F ) = (xk). So supp(F ) = {0}, but

Cyc(F ) = k · [0] = [0] + · · ·+ [0]︸ ︷︷ ︸
k times

.

I.e. m(F , {0}) = k. A chain of length k is

0→ OX/(x)
·x−→ OX/(x

2)
·x−→ · · · ·x−→ OX/(x

k).

We have the same result for F ′ =
⊕k

i=1 OX/(x), i.e.

Cyc(F ′) = k · [0].

So the cycle does not distinguish between these two different sheaves.

12. D-modules: Singular support and filtrations.

Recall that DX is a sheaf of rings on X, and we have a filtration

F0DX ⊆ F1DX ⊆ · · · ;

previously we called FiDX = DX(i), the differential operators of order ≤ i. Recall that

GrF (DX) = Sym•OX (TX) ⊆ (πX)∗OT∗X .

If M is a coherent DX -module, we want to define a subset, the singular support,

SS(M ) ⊆ T ∗X,

a closed analytic conic subset (i.e. it is stable under the C× action on T ∗X given by t · (x, ξ) = x, tξ)). We
will also define the associated cycle of SS(M ) in T ∗X, which we call CC(M ) (the characteristic cycle).

Assume we have a filtration FiM (Fk(DX) · Fl(M ) ⊆ Fk+l(M )) such that

GrF (M ) is coherent as a GrF (DX)-module.

Locally we can pick generators u1, . . . , ur of M and define

FkM :=

r∑
i=1

Fk(DX) · ui.

Gr(M ) is a coherent SymO(TX)-module, and we extend scalars

Gr(M )∼ := OT∗X ⊗π−1
X Sym(TX) π

−1
X Gr(M ) ∈ Coh(T ∗X).

Then

SS(M ) = supp(Gr(M )∼),

CC(M ) = Cyc(Gr(M )∼).

Recall: A (left) DX -module is equivalent to the data of an OX -module with a flat connection.

Let M be a DX -module. Say that M is filtered when

· · · ⊆ FiM ⊆ Fi+1M ⊆ · · ·

such that

(1) FiM = 0 for i << 0,
(2)

⋃
i FiM = M , and

(3) FiDX · FjM ⊆ Fi+jM .
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A filtration is called good if additionally

GrF (M ) :=
⊕
i

(FiM /Fi−1M )

is a coherent GrF (DX)-module.

Remark The good condition implies that M is coherent as a DX -module.

Remark If M is coherent (as a DX -module) then locally it is generated by some sections, s1, . . . , sr. I.e.
there exists U such that

M |U = DU · s1 + · · ·+DU · sr.
Define

FiM |U := FiDU · s1 + · · ·+ FiDU · sr.
Claim: (M |U , F ) is a good filtration. I.e. good filtrations exist locally for a coherent DX -module.

Given (M , F ) a good filtered DX -module,

GrF (M ) is a coherent Sym•OX (TX) = Gr(DX)-module.

Aside: If V is a finite dimensional vector space over C, the ring of polynomial functions on V is

Sym•C(V ∗) = C⊕ V ∗ ⊕ Sym2(V ∗)⊕ · · ·

I.e. if e1, . . . , er is a basis for V with dual basis ε1, . . . , εr,

Sym•(V ∗) = C[ε1, . . . , εr].

If M is a Sym•(V ∗)-module, then for Ann(M) ⊆ Sym•(V ∗)

V (Ann(M)) = supp(M) ⊆ V.

V is also a C-manifold, so we have OV . We can think of Sym•(V ∗) as a constant sheaf of rings. Then we
have

OV ⊗Sym•(V ∗) M =: M∼,

which is a coherent sheaf. supp(M) = V (Ann(M∼)), i.e. we have the same notion of support.

If M =
⊕

iMi is a graded module over Sym•(V ∗) =
⊕

i Symi(V ∗) (a graded ring), then Ann(M) is a
homogeneous ideal. Then supp(M) is conic, i.e. it is preserved by the C× action on V . End aside.

Now, to make sense of Sym•OX (TX), think of

V = T ∗xX, V ∗ = TxX for each point x ∈ X.

So if (M , F ) is a good coherent DX -module, we have that

GrF (M ) is a coherent Sym•OX (TX)-module,

and so we get

Gr(M )∼ = OT∗X ⊗π−1
X Sym(TX) π

−1
X (GrF (M )),

which is a coherent OT∗X -module, where πX : T ∗X → X is projection.

Definition 36. The singular support is

SS(M , F ) = supp(GrF (M )∼) = V (Ann(GrF (M )∼)) ⊆ T ∗X.

SS(M ) is a conic subset of T ∗X.

Proposition 12.1. SS(M , F ) is independent of the choice of good filtration F .

We omit the proof.

Corollary 12.2. If M is a coherent DX-module, SS(M ) ⊆ T ∗X is well-defined.
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Definition 37. The characteristic ideal of M is

JM :=
√

Ann(Gr(M )∼) ⊆ Sym•(TX).

The characteristic cycle is

CC(M ) = Cyc(Gr(M )∼).

Example 73. Let M = DX and F be the order filtration.

GrF (DX) = Sym•(TX)

and

GrF (DX)∼ = OT∗X ,

so we have

SS(DX) = supp(OT∗X) = T ∗X.

Remark Think of DX as a noncommutative deformation of Sym•(TX) ⊆ OT∗X , i.e. that DX is a quantiza-
tion of T ∗X.

Think of DX -modules as “living on T ∗X”. The first approximation to this idea is

M 7→ SS(M ) ⊆ T ∗X.

Example 74. Given P ∈ DX , let MP = DX/DX · P . (I.e. this roughly corresponds to solving the equation
Pu = 0.) So P could be, for example, x2∂2

x + · · · . Then the principal symbol of P is

σ(P ) = image of P in Grm(DX) where m is maximal.

Implicitly we are considering the ∂∗ as coordinates on the cotangent bundle. For instance, P = x2∂2
x + x∂x

has

σ(P ) = x2ξ2,

where (x, ξ) are coordinates on T ∗X (here ξ = σ(∂x)).

Proposition 12.3. SS(M ) = V (σ(P )) ⊆ T ∗X.

Proof. We have a SES

0→ DX
·P−→ DX

q−→MP → 0.

q induces a good filtration on MP by taking the image of the filtration on DX . Then

Gr(MP ) = Sym(TX)/(σ(P )).

�

Example 75. Let X = ∆ = {|x| < 1} ⊂ C. Take P = ∂x, so MP = OX . Then

SS(OX) = V (ξ) = X ⊂ T ∗X,

where X includes into T ∗X as the zero section.

Example 76. Now take P = x. Then

SS(MP ) = V (x) = T ∗0X ⊆ T ∗X.
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Figure 31. Singular supports of OX and Mx in T ∗X.

Example 77. Now take P = x∂x. Then σ(P ) = xξ, so SS(MP ) = V (xξ) = X ∪ T ∗0X.

Figure 32. Singular support of the Euler operator x∂x.

In the above examples, the characteristic cycles are

CC(OX) = [X], CC(Mx) = [T ∗0X], CC(Mx∂x) = [X] + [T ∗0X].

Suppose (V ,∆) is a flat connection, i.e. V is a locally free OX -module of finite rank.

Proposition 12.4. SS(V ) = X ⊂ T ∗X.

Proof. The induced filtration is

0 = F−1V ⊆ F0V = V ⊆ V ⊆ V ⊆ · · · ,
so GrF (V ) = V . Locally we can choose a horizontal frame and express V = O⊕rX as a Sym(TX)-module,
where TX acts by 0. So, Ann(V ) = (TX), and

SS(V ) = X, CC(V ) = r · [X].

�

In fact, the following are equivalent for a coherent DX -module M :

(1) M is a flat connection (i.e. locally free OX -module).
(2) SS(M ) is contained in the zero section of T ∗X.
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(3) M is coherent as an OX -module.

Lemma 12.5 (Bernstein’s Lemma). If M is a coherent DX-module,

dim(SS(M )) ≥ dim(X) =
1

2
dim(T ∗X).

We defer the proof to later.

Recall that if (W 2n, ω) is a symplectic vector space, V ⊆W a subspace, then V is called

• isotropic if ω|V = 0 (which implies that dim(V ) ≤ n),
• coisotropic if ω|V ⊥ = 0 (which implies that dim(V ) ≥ n),
• Lagrangian if it is isotropic and coisotropic (in which case dim(V ) = n).

Theorem 12.6 (Gabber’s Theorem). SS(M ) is coisotropic in T ∗X.

Definition 38. A DX -module is called holonomic if dim(SS(M )) = dim(X).

By Gabber’s theorem, this is equivalent to SS(M ) being Lagrangian in T ∗X.

13. Holonomic D-modules.

We now consider a generalization of the theory of differential equations.

If Pu = 0, P ∈ DC, we have that the space of solutions u ∈ OC is finite dimensional. If X is a complex
manifold, recall that a (coherent) DX -module M is called holonomic if SS(M ) ⊆ T ∗X is Lagrangian
(equivalently, dimSS(M ) = dim(X)).

Example 78. If dimX = 1 and DX = DX/DX · P = MP for P ∈ DX , then

SS(MP ) = V (σ(P )) ⊆ T ∗X,

and dimSS(MP ) = 1 unless P is constant.

Theorem 13.1 (Kashiwara, PhD thesis). Let M be a holonomic DX-module. Then we have two complexes
of sheaves,

Sol(M ) :=RH omDX (M ,OX), “solutions of M ”,

DR(M ) :=M
∇−→M ⊗OX Ω1

X → · · · →M ⊗OX ΩnX , “de Rham complex”.

These are both constructible complexes with regards to some “nice” analytic stratification of S. In particular,
the stalks of both complexes are finite dimensional.



64 TYPED BY RICHARD HUGHES FROM LECTURES BY SAM GUNNINGHAM

Figure 33. Picture of a constructible sheaf.

14. Functors for D-modules.

Recall that for sheaves we had the “6-functor formalism”: ∗- and !- adjoint pushforwards and pullbacks, E xt
and ⊗. We would like similar adjoint functors for D-modules – we will see, however, that these may not
always exist, and even when they do exist they will only be adjoint for holonomic D-modules.

Given a holomorphic map of complex manifolds, f : X → Y , we will define functors between the bounded
derived categories of D-modules

Db(DY ) Db(DX).

fdR
∗

f†

Beware: In general these are not adjoint!

We recall and compare previous situations. Some notation has been changed from previous lectures to avoid
overloading.

14.0.1. CX-modules.

Sh(X;C) Sh(Y ;C)

f•

f−1

f−1 is exact, and is left adjoint to f• (which is therefore left exact). These give rise to derived functors f−1

and Rf•.

14.0.2. O-modules.

OX -mod OY -mod

f•

f∗O
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where
f∗O(F ) := OX ⊗f−1(OY ) f

−1(F ).

f∗O is left adjoint to f•, so is right exact. OX is generally not f−1(OY )-flat, so f∗O is not exact. Thus, we
have a left derived functor Lf∗O . Similarly, f• is left exact, so gives a right derived functor Rf•.

14.0.3. Some examples.

(1) If V is a vector bundle on Y ,

f−1(V ) = V ×Y X V

X Y

and
Γ(−; f−1(V )) = f∗O(Γ(−;V )).

(2) If i : {x} ↪→ X, F ∈ OX -mod, then i−1(F ) = Fx, the stalk of F at x. This is often an ∞-
dimensional space of convergent power series. Conversely and comparatively,

i∗O(F ) =

(
OX,x
mx

)
⊗OX,x Fx = Fx/Fx ·mx,

which we call the fibre of F at x. If F is a vector bundle, this is literally the fibre.

14.0.4. D-modules. Define a functor
f◦ : DY -mod→ DX -mod

as follows. Let
f◦(M ) = f∗O(M )

as an OX module. Then to define a DX -module structure, we need to say how v ∈ TX acts on m ∈ f∗O(M ).
Tangent vectors pushforward, TX,x → TY,f(x), and these can be put together to give a map

TX → f∗O(TY )

v 7→ ṽ

f∗O(M ) = OX ⊗f−1(OY ) f
−1(M ). Given g ⊗m, g ∈ OX and m ∈ f−1M ,

v · (g ⊗m) = v(g)⊗m+ g ⊗ ṽ(m).

Now define (since f◦ is right exact) a left derived functor

f† := Lf◦.

14.1. Transfer bimodule. Define
DX→Y := f◦(DY ).

I.e.
DX→Y = OX ⊗f−1(OY ) f

−1(DY ),

so this carries a left DX -module action, and a right f−1(DY )-module action. Then we have functors (of left
modules)

DY -mod f−1(DY )-mod DX -mod.
f−1

f◦

DX→Y ⊗f−1(DY )(−)

We call DX→Y the transfer bimodule. Then

f† = DX→Y ⊗Lf−1(DY ) (f−1(−)),

the left derived tensor product. We also have a functor in the opposite direction, but for right modules:

Dop
X -mod

(−)⊗DXDX→Y−−−−−−−−−−→ f−1(DY )op-mod
f•−→ Dop

Y -mod.
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Recall that there is a nontrivial equivalence of categories between DX -mod and Dop
X -mod (and that this is

a special property of D-modules, not something that holds for arbitrary noncommutative rings). To get a
functor on left D-modules we take

Dop
X -mod f−1(DY )op-mod Dop

Y -mod

DX ⊗−mod DY -mod

∼ΩnX⊗OX
(−)

(−)⊗DXDX→Y f•

∼ ΩnY ⊗OY
(−)

f◦

Define

fdR
∗ : Db(DX)→ Db(DY )

fdR
∗ (M ) := Rf•(DY←X ⊗LDX M )

What is DY←X? There is an equivalence of categories

DX − f−1(DY )-bimodules ' Dop
X − f

−1(DY )op-bimodules = f−1(DY )−DX -bimodules.

Then DX→Y ↔ DY←X under this equivalence.

14.2. Closed embeddings. Let i : Z ↪→ X be a closed embedding (recall that this implies i• is exact).
Consider

i◦ : DX -mod→ DZ-mod

i◦(M ) = DZ→X ⊗i−1(DX) i
−1(M ),

and

i! : DX -mod→ DZ-mod

i!(M ) = i−1H omDX (DX←Z ,M )

Lemma 14.1 (Kashiwara’s Lemma). There is a pair of adjoint functors (i◦, i
!)

DZ-mod DX-mod
i◦

i!

which induce an equivalence of categories between

DZ-mod (DX-mod)Z

i◦

i!

where the right hand side is the category of DX-modules supported on Z.

Remark This is not true for O-modules.

Example 79. Consider the inclusion of a point {x} ↪→ X = C. Then O{x}-mod = Vect, while (OX -mod){x}
contains nontrivial extensions, such as

0→ OX,x/mx → OX,x/m
2
x → OX,x/mx → 0.

So (OX -mod){x} is not semisimple, thus not equivalent to Vect.

Lemma 14.2 (Kashiwara’s Lemma part II). (i◦, i
!) also gives an equivalence on the level of derived categories.
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14.3. Where do the transfer bimodules come from? DX -modules “live on T ∗X”, as a deformed version
of quasicoherent sheaves. Given a map f : X → Y , we don’t get a map between cotangent bundles. Instead
we get a correspondence or span

T ∗X T ∗Y ×Y X T ∗Y.
ρf $f

In fact T ∗X and T ∗Y are symplectic, and thinking of the above as a map into the product T ∗X × T ∗Y , the
middle object is in fact Lagrangian. We then have

T ∗X T ∗Y ×Y X T ∗Y

DX DX→Y or DY→X DY

ρf $f

quantization

We can understand the reverse map, e.g. DX → T ∗X; DX has a filtration as a DX -module, and the associated
graded is functions on T ∗X.

14.3.1. Case 1: f = i : X ↪→ Y a closed embedding.

Example 80. See Figure 34.

Figure 34. The span of a closed embedding.

In more generality, X is defined by a sheaf of ideals IX ⊆ OY . Then

OX = i−1 (OY /IX)

DX→Y = OX ⊗i−1OY i
−1DY = i−1 (DY /IX · DY )

Exercise 14.1. Show that DY←X = i−1(DY /DY ·IX).

Definition 39. We define two underived functors:

i◦(N ) = DX→Y ⊗i−1DY i
−1N = i−1(N /IX ·N ),

i\(N ) = H omi−1DY (DY←X , i−1N ) ∈ DX -mod.

Remark Here and following, N ∈ DY -mod and M ∈ DX -mod.

Observe that

i◦(M ) = i•(DY←X ⊗DX M );

there is no need to derive, since pushforward along a closed embedding is exact.
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Remark • i◦ uses the forward facing bimodule DX→Y .
• i\ and i◦ use the backwards facing bimodule DY←X .

Proposition 14.3. (1) i◦ is exact (DY←X is flat over DX), i◦ is right exact, and i\ is left exact.
(2) i† = Li◦ = Ri\[d] where d = codim(X ↪→ Y ).
(3) i\ is right adjoint to i◦, and moreover Ri\ is right adjoint to Li◦ = idR∗ .
(4) i◦ induces an equivalence of categories

DX-mod (DY -mod)X

i◦

i\

Again, there is a derived statement:

Db(DX -mod) Db[(DY -mod)X ]

Li◦=i
dR
∗

Ri\

Example 81. Let’s look at a special case:

X = {z = 0} ⊆ Y a hypersurface.

We have local coordinates y1, . . . , yn = z on Y (so the last coordinate cuts out the hypersurface X). In this
case the transfer bimodule is

DX→Y = i−1(DY /z · DY ).

This is resolved by

i−1(DY /z · DY ) ' (i−1DY
−1

·z−→ i−1DY
0

)

and similarly

DY←X ' (i−1DY
−1

·z−→ i−1DY
0

).

So we have an explicit description

i\(N ) = H omi−1DY (i−1DY /i−1DY · z),N ) = ker(z : N → N ).

Now, as a right DX -module,
DY←X = C[∂z]⊗C DX .

The difference between this and DY is that we don’t have functions of the coordinate z (which vanishes on
X) – however, we still have vector fields in the ∂z-direction. Note that DY←X is free as a right DX -module.

Thus, the functor i◦ is given by

i◦(M ) = i•(DY←X ⊗DX M ) = C[∂z]⊗C M .

Think: i◦ is “fattening M up” along the line 〈∂z〉.

What is the DY -module structure on this?

i◦M = · · · ⊕ ∂2
zM ⊕ ∂zM ⊕ M 0.

·z ·z

∂z

·z

∂z

·z

∂z

Claim that since zM = 0, the action of the other ·z is determined by commutations with the ∂z. Define

E := z∂z the Euler operator.

Claim that ∂izM is the (−i− 1)th-eigenspace of E.

E = z∂z = ∂zz − 1,

and zM = 0. So E acts on M as multiplication by −1. Then we can check that

• multiplication by ∂z lowers the eigenvalue by 1, and
• multiplication by z increases the eigenvalue by 1.
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Claim: i\i◦M ∼= M .

Proof. The z and ∂z operations are isomorphisms on i◦M , except for in the last place where zM = 0. So

i\i◦M = ker(z : i◦M → i◦M ) = M .

�

Remark i\i◦M ←M will be the unit for an adjunction.

Now suppose N ∈ DY -mod. Look at

N i := {ith eigenspace of E acting on N }.

• We have no guarantee that i is integral.
• We have no idea whether this is bounded at either end:

· · · ⊕ N i−2 ⊕ N i−1 ⊕ N i ⊕ N i+1 ⊕ · · ·
·z ·z

∂z

·z

∂z

·z

∂z

·z

∂z ∂z

Note:

• This might not be all of N (e.g. N i+ 1
2 could exist).

• ker(z) ⊆ N −1, so we see that the counit for the adjunction is

· · · ⊕ ∂z ker(z)⊕ ker(z) = i◦i
\N → N .

Now assume supp(N ) ⊆ X. I.e.

zN ·m = 0 for all m ∈ N , N >> 0.

If z ·m = 0 then m ∈ N −1. By an induction argument, if zN ·m = 0 then

m ∈ N −N ⊕ · · · ⊕N −1.

Exercise 14.2. In this case, i◦i
\N

∼−→ N .

Hence in this case we have shown an equivalence

{D-modules on X} {D-modules on Y supported on X}

DX -mod (DY -mod)X

∼

i◦

i\

Remark If X ↪→ Y is a closed embedding but not a hypersurface, it is cut out by a collection of functions
(locally coordinate functions), X = {z1 = · · · = zr = 0}. Let

K(zi) = (i−1(OY
·zi−−→ i−1(OY )).

Then we define the Koszul complex of X ⊆ Y to be

K(z1)⊗ · · · ⊗K(zr).
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14.4. A concrete calculation. Let’s compute

pdR
∗ : Db(DX)→ Db(C),

where p : X → pt. We have the transfer bimodules

DX→pt = OX left D-module, right module for constant sheaf)

and

Dpt←X = OX ⊗ Ωtop
X = Ωtop

X = ΩnX ,

where n = dim(X). So

pdR
∗ (M ) = ΩnX ⊗LDX M .

How do we compute ⊗L? We either need to replace ΩnX of M . To do this uniformly for all M we will replace
ΩnX by a complex of locally free Dop

X -modules (right DX -modules).

We do this by taking a left module resolution of OX , then we will use the dualizing sheaf to produce the
desired resolution.

Lemma 14.4. There are (locally free) resolutions

DX ⊗OX

∧n TX · · · DX ⊗OX

∧2 TX DX ⊗OX TX DX OX = DX/DX ·TX

P ⊗ v P · v

P ⊗ (v1 ∧ v2) Pv1 ⊗ v2 − Pv2 ⊗ v1

−P ⊗ [v1, v2]

and

DX = Ω0
X ⊗OX DX → · · · → Ωn−1

X ⊗OX DX → ΩnX ⊗OX DXDR(DX)︸ ︷︷ ︸
the de Rham complex of DX though of as a DX-module.

→ ΩnX

The proof of these claims reduces to the commutative case. I.e. equip everything with compatible good
filtrations. Then take associated graded – you will see this is

i∗OX ∈ OT∗X -mod,

where i : X ↪→ T ∗X is the zero section.

Why is this enough? There is an algebraic lemma to prove: if you have a good filtered complex of D-modules,
it is exact iff its associated graded is exact. This is a common technique – reduce a non-commutative problem
to a problem in the associated graded.

So, we now have a quasi-isomorphism (so equality in the derived category)

ΩnX ⊗LDX M ' (Ω•X ⊗ OXDX)⊗DX M = Ω•X ⊗OX M = DR(M ).

Caution: We have changed out grading convention. Now, DR(M ) is concentrated in degrees −n,−n +
1, . . . , 0.

Now, to compute pdR
∗ (M ) we take the pushforward, i.e.

pdR
∗ (M ) = RΓ(DR(M )).

Think: Analogue/generalization of taking the de Rham cohomology.

Example 82. Let M = OX . Then

DR(M ) = OX
−n
→ Ω1

X
−n+1

→ Ω2
X

−n+2
→ · · · → ΩnX .

0

Without the grading shift, this is a resolution of the constant sheaf, i.e.

DR(OX) ' CX [n].
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Then

pdR
∗ (OX) = RΓ(X;CX [n]) = H∗−n(X;C)︸ ︷︷ ︸

in degrees −n to n

Remark This will make Poincaré duality look symmetric around 0.

Remark Could play the same game with OX replaced by a local system.

More generally, suppose f : X → Y is smooth (i.e. is a submersion – this is smoothness in the algebraic
geometric sense). We define Ω1

X/Y as

0→ f∗Ω1
Y → Ω1

X → Ω1
X/Y → 0.

Locally (by the implicit function theorem) X ∼= Y × Z, so Ω1
X/Y has elements of the form f(y, z)dz. Then

we can form

ΩkX/Y =
∧k

OX
Ω1
X/Y ,

which carries a de Rham differential dX/Y (apparent from the local form of the elements).

Proposition 14.5.

fdR∗ (M ) = Rf•(DRX/Y (M )).

Remark For any f : X → Y we can factor as

X X × Y Y,
Γf p2

a closed embedding (via the graph of f) followed by a submersion.

Remark We say a submersion is smooth because the fibres have the structure of a smooth manifold –
describing a map by the properties of its fibres is a general principle in algebraic geometry.

Let f : X → Y be smooth. Then we have

T ∗Y ×Y X

T ∗X T ∗Y

ρf $f

Proposition 14.6. (1) f◦ : DY -mod→ DX-mod is exact (so f† ' f◦).
(2) f◦ preserves coherent D-modules.
(3) SS(f◦M ) = ρf$

−1
f (SS(M )).

(4) f†[−d] is left adjoint to fdR∗ , where d is the relative dimension of f .

Example 83. Consider X → pt. The singular support must lie in the zero section, as shown in Figure 35.
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Figure 35. Correspondence for X → pt. pt×ptX ∼= X, so by the proposition SS(p◦M ) ⊆
X ⊂ T ∗X.

In this case, observe that ρf is a closed embedding and $f is smooth.

Proof of part 1. When f is smooth it is in particular flat, so OX is flat as an f−1OY -module. Thus f◦ is
exact. �

We defer the rest of the proof to later.

15. (Verdier) Duality for D-modules.

Let M ∈ DX -mod. We want to define a dual to M , so our first obvious guess is

RH omDX (M ,DX).

This is a right DX -module; i.e. a Dop
X -module. To get a left DX -module, tensor with the inverse of the

dualizing sheaf,

RH omDX (M ,DX)⊗OX (ΩnX)∨ ∈ DX -mod.

Define

DX(M ) := (RH omDX (M ,DX)⊗OX (ΩnX)∨) [dimX].

Example 84. Let X = C, MP = DX/DX · P , P ∈ DX . Then there is a quasi-isomorphism

MP ' DX
−1

·P−→ DX
0
.

So

RH omDX (MP ,DX) = H omDX (DX
·P−→ DX ,DX)

DX
0

P ·−→ DX
1

Definition 40. For M ∈ DX -mod and N ∈ Dop
X -mod, define

M r = M ⊗OX ΩnX ∈ D
op
X -mod

N l = (ΩnX)∨ ⊗OX N ∈ DX -mod
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Since ΩnX
∼= OX for X = C, we therefore have

DX(MP ) = DX/DX · P ∗,
in degree 0 due to the degree shift in the definition. Here P ∗ is the adjoint of P – recall that there is a
nontrivial isomorphism

DX Dop
X

x x

∂x −∂x

x∂x −∂x · x

∼

and P ∗ is the image of P under this map.

Proposition 15.1. Let Db
coh(DX) be the derived category of complexes of DX-modules with coherent coho-

mology. Then

• DX : Db
coh(DX)

∼−→ Db
coh(DX)op.

• DX ◦ DX ' idX .
• M is holonomic (in degree 0) if and only if DX(M ) is in degree 0.

15.1. Big Picture. We started the semester with sheaves on a space X:

H∗(X)

H∗c (X)

X a topological space H∗(X)

HBM
∗ (X)

Db(CX), the derived category of sheaves on X.

The 6-functor formalism gave us a nice framework by which to perform calculations in topology: recall that
given f : X → Y we had functors

Rf∗, Rf!, f∗, f !,

where

• Rf∗ is right adjoint to f∗, and
• Rf! is left adjoint to f !.

There is also a duality functor, DX . Its cohomology sheaves H iDX(F ) are given by the sheafification of

U 7→ Hi
c(U ; F )∨.

We constructed DX(CX) = ωX . Then

DX(F ) = RH omCX (F , ωX).

It is useful to use this duality functor to talk about relations between our functors. To do this we have to
restrict the category we look at:

Db
c(CX) = bounded derived category of constructible complexes (with respect to some stratification).

Then DX gives an equivalence

DX : Db
c(CX)

∼−→ Db
c(CX)op, DX ◦ DX ' id.



74 TYPED BY RICHARD HUGHES FROM LECTURES BY SAM GUNNINGHAM

This is a quite nontrivial self-duality.

Example 85. DX(CX) = ωX , and Hom(F ,G ) = Hom(DG ,DF ).

Fact/slogan: Commuting past the duality functor turns ! into ∗,

• Rf∗ ◦ DX ' DY ◦Rf!.
• f∗ ◦ DY ' DX ◦ f !.

This will, for instance, swap various kinds of (co)homology around. So this is a “sheafy” version of Poincaré
duality.

Definition 41. DX is called the Verdier duality functor.

We would like a similarly nice (6 functor) formalism for D-modules. As motivations, recall the picture of the
Riemann-Hilbert correspondence (Figure 36).

Example 86. Given f : CN → C a holomorphic function, consider f−1(0) = Z ⊆ CN . Supposing some
niceness properties (e.g. 0 an isolated singular value), we had some nice properties of the following functors
and sheaves/ For instance, consider

Rf∗(CCN ) ∈ Db
c(CC).

We considered the fibre Z as the central fibre X0 in a family as per Figure 37.

Figure 37. Studying a space Z as the central fibre in a family.
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We then studied Rf∗(CX), but also some more interesting sheaves of vanishing and nearby cycles, φf , ψf ∈
Db
c(CX0).

To compute f !, f∗, Rf∗, Rf!, ψf , φf , we will ask what they correspond to under the Riemann-Hilbert cor-
respondence. We will also ask what the singular support SS(M ) of a D-module corresponds to under
Riemann-Hilbert.

Plan:

• Functoriality for coherent and holonomic D-modules.
• Regular singularities, Riemann-Hilbert.
• Perverse sheaves, intersection cohomology.
• V -filtration, nearby and vanishing cycles, specialization to the normal cone.

15.1.1. Aside: Algebraic versus analytic D-modules. We’ve been talking about X a complex manifold, with
sheaves OX of holomorphic functions and DX of holomorphic differential operators.

We could instead have started with X a smooth algebraic variety (over C). Then talking complex points
gives a complex manifold, but this does not have a converse – e.g. the disk ∆ = {x | |x| < 1} is not an
algebraic variety.

X a complex manifold (complex topology) X a smooth algebraic variety over C (Zariski topology)

Oan
X holomorphic functions Oalg

X algebraic functions

Dan
X holomorphic differential operators Dalg

X algebraic differential operators
Table 1. Algebraic versus analytic comparison.

Example 87. X = Cn = An ⊃ Uf = An − {f = 0}. Then2

Oalg
X = C[x1, . . . , xn]

Oalg
X (Uf ) = C[x1, . . . , xn][f−1].

This is manifestly a much smaller space than Oan
X , the holomorphic functions on Cn.

Now, Dan
X contains elements of the form ∑

i

fi(x)∂i

where the fi are holomorphic functions – i.e. elements which are a power series in x and a polynomial in ∂.

The description of Dalg
X is much simpler. For example, we can present it in terms of generators and relations:

Dalg
X = C〈x1, . . . , xn, ∂1, . . . , ∂n〉/ ∼, [∂i, xj ] = δij , [xi, xj ] = 0 = [∂i, ∂j ].

15.2. Base change for D-module functors. Given f : X → Y , we produced

Db(DX) Db(DY )

fdR
∗

f !
dR

where f !
dR := f†[dimX − dimY ]. Warning: Recall that these are not necessarily adjoint.

Consider the base change

X ′ = X ×Y Y ′ X

Y ′ Y

g̃

f̃ f

g

2Abusing notation by conflating a sheaf with its global sections – okay since we are working with affine varieties.
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Theorem 15.2 (Base Change Theorem). f !
dRg

dR
∗ ' g̃dR∗ f̃ !

dR.

There are two special cases:

• f is proper (e.g. f is a closed embedding).
– fdR
∗ will preserve coherent complexes.

– fdR
∗ is left adjoint to f !

dR.
– fdR
∗ ◦ DX ' DY ◦ fdR

∗ .
• f is smooth (i.e. a submersion) of relative dimension d.

– f !
dR will preserve coherent complexes.

– f !
dR[−2d] is left adjoint to fdR

∗ .
– f !

dR ◦ DY ' DX ◦ f !
dR[−2d].

– We have

f∗dR = f†[−d] and f !
dR = f†[d].

– f† is exact.

16. Interpretation of singular support.

Question: What does SS(M ) mean?

Answer (to be explained): It measures directions in X for which solutions to M propagate.

Let f : X → Y , X,Y complex manifolds (working in the analytic setting). We have

T ∗Y ×Y X

T ∗X T ∗Y

SS(M ) lives here

ρf $f

Fix M ∈ (DY -mod)coh.

Definition 42. f is called noncharacteristic for M if

$−1
f (SS(M )) ∩ T̊ ∗XY = ∅.

Here T ∗XY = ker(ρf ) (a vector bundle on X, and

T̊ ∗XY = T ∗XY − {0-section}.

If X ↪→ Y is a closed embedding, T ∗XY is called the conormal bundle of X ↪→ Y . Another way of under-
standing this in the closed embedding case is as:

$−1
f (SS(M )) ∩ T ∗XY ⊆ 0-section.

Example 88. If f is smooth (submersion) then

T ∗XY = {0} ×X.
Thus f is noncharacteristic for any M .

Example 89. If SS(M ) = T ∗Y Y = 0-section, any f is noncharacteristic for M .

Example 90. Consider

X Y

Z

f

g



Spring 2015 Topics in D-modules. 77

where f and g are both closed embeddings. Let M = fdR
∗ (OX). When is Z a noncharacteristic submanifold

for M (i.e. when is g noncharacteristic for M )?

Recall from a previous lecture that

SS(M ) = T ∗XY.

This is noncharacteristic if and only if

$−1
g (T ∗XY ) ∩ (T ∗ZY ) = 0-section,

if and only if

(T ∗XY )x ∩ (T ∗ZY )x = 0 for all x ∈ Z ∩X.
I.e. SS(M ) is noncharacteristic if and only if X t Z, as in Figure 38.

Figure 38. Transverse embedded submanifolds with their conormal bundles.

Theorem 16.1. Suppose f : X → Y is noncharacteristic for M .

(1) f†(M ) = H 0f†(M ) = f◦(M ) (concentrated in degree zero – i.e. not being concentrated in degree
zero is a non-transversality condition).

(2) f†(M ) is a coherent DX-module.
(3) SS(f†M ) = ρf ($−1

f (SS(M ))).

(4) f†(DY M ) =∼= DX(f†M ).

Recall:

• f†(M ) = OX ⊗f−1OY f
−1M .

• f !
dR(M ) = f†(M )[dim(X)− dim(Y )].

In general, f† (or f !
dR) does not preserve coherence.

Example 91. i : {0} ↪→ A1 induces i†(DA1), which is infinite dimensional.

Upshot: When is it reasonable to restrict coherent D-modules as above? When the D-module is nonchar-
acteristic.

Remark The above theorem still makes sense in the algebraic setting – it might even be easier to prove
there.

Theorem 16.2 (Cauchy-Kovalevskaya-Kashiwara). Let f : X → Y be noncharacteristic for M , then

SolX(f†M ) = f−1SolY (M ).

Recall that

SolY (M ) = RH omDX (M ,OY ).
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Motivated by: M = DX/DX · P , where we interpret

SolX(M ) = {u |Pu = 0}.

Consider the special case (the general proof always reduces to this special case):

X ⊆ Y a hypersurface,

M = DY /DY · P, P ∈ DY .

Everything is local, so choose coordinates y1, . . . , yn on X such that

X = {y1 = 0} ⊆ Y.

What does it mean for X to be noncharacteristic for M (this should be some condition on the differential
operator P )? Recall that

SS(M ) = V (σm(P )), where P is of order m.

Let ξ = σ(∂) (a function on the cotangent bundle), and write

P =
∑
|α|≤m

aα(y)∂α

σm(P )
∑
|α|=m

aα(y)ξα.

X is noncharacteristic for M (or for P ) iff for all ξ ∈ T̊ ∗XY σm(P )(ξ) 6= 0, iff

σm(P ) = (0, y2, . . . , yn, 1, 0, . . . , 0) 6= 0.

(Here the first coordinate is 0 since we are on X, and consequently the only conormal direction to X is in
the ξ1 position.) In coordinates we write P as

P =
∑

aα1,...,αn(y1, . . . , yn)∂α1
y1 · · · ∂

αn
yn .

So the above condition means

am,0,...,0(o, y2, . . . , yn) 6= 0.

Looking in a neighbourhood of X, then, we can invert this term so that, without loss of generality,

P = ∂m1 + (lower order terms in ∂1).

So: X being noncharacteristic for P of order m means that P is mth order in the X direction, plus (poten-
tially) other terms in other directions.

So, consider the claims of the theorem. We have

f†(M ) = M
−1

y1·−−→M
0
.

This has potentially two cohomology groups. We want to show that y1· is injective. This would imply that

f†(M ) = f◦(M ) = M /y1M = DY /(DY · P + y1 · DY ).

Claim:

DY /(DY · P + y1 · DY ) ∼= D⊕mX .

Example 92. Consider

f◦(M ) = DX [∂1]/Dx[∂1] · P.
Let P = ∂m1 . Then we have that

f◦(M ) ∼= D⊕mX .

In general,

1, ∂1, ∂
2
1 , . . . , ∂

m−1
1 is a basis for f◦(M ) as a DX -module.
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Let’s pretend/assume that this corresponds to a proof of the first theorem we wrote down. What about the
Cauchy-Kovalevskaya-Kashiwara theorem? The claim there was that

f−1SolY (M ) SolX(f †M )

f−1RH omDY (DY /DY · P,OY ) RH omDX (D⊕mX ,OX)

f−1(OY
0

P (−)−−−→ OY
1

) O⊕mX

∼=

∼=

(use the 2 term free resolution)DY
·P−→DY ∼=

The above map is then

f−1(OY
0

P (−)−−−→ OY
1

O⊕mX

u ∈ OX (u|X , ∂1u|X , . . . , ∂m−1
1 u|X)

This isomorphism is essentially an existence and uniqueness statement for an mth order boundary value
problem:

Theorem 16.3 (Cauchy-Kovalevskaya). The Cauchy problem

Pu = 0
u|X = v1

∂1u|X = v2

...
∂m−1

1 u|X = vn


has a unique solution u ∈ f−1OY .

(Here P = ∂m1 + · · · is noncharacteristic.)

To answer the question, “What does SS(M ) mean?”, we will need a variant of the Cauchy-Kovalevskaya
theorem. Let φ : X → R be a C∞-function, X a complex manifold. Suppose

X0 = φ−1(0) is a smooth real hypersurface.

Let M be a coherent DX -module such that

SS(M ) ∩ T̊ ∗X0
(XR) = ∅.

Remark This uses the identification

(T ∗X)R T ∗(XR)

(∂φ)x (dφ)x.

∼=

Then

(RΓX≥0
(SolX(M )))X0 ' 0.

We can picture this as in Figure 39.
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Figure 39. Solutions on X<0 propagate across X0 to solutions on X>0.

Recall that if k : W ↪→ X is a locally closed embedding,

RΓW = Rk∗k
!, (−)W = Rk!k

∗.

We have a decomposition of our space into an open and a closed, so letting

F • := SolX(M ),

we have an exact triangle

RΓX≥0
(F •)→ F • → RX<0

(F •)
+1−−→

Looking stalkwise we see that applying (−)X≤0
and using the theorem gives

(RΓX≤0
(F •))X≤0

= 0,

so,

(F •)≤0
∼−→ RΓX≤0

(F •).

We interpret this as saying that (holomorphic) solutions to M on X<0 extend (to holomorphic solutions)
over X0.

Meaning: Solution to M on X<0 can propagate over a “small’ neighbourhood of X0. The proof of this
involves reducing to the case

M = DX/DX · P,
then expressing the result as a Cauchy problem.

16.1. Microsupport.

Definition 43. Let F ∈ Db(CX), X a C∞R -manifold. Define the microsupport of F , µs(F ) as follows.
µs(F ) ⊆ T ∗X, and

T ∗X 3 (x0, ξ0) 6∈ µs(F ) if and only if
There exists an open set U ⊆ T ∗X with (x0, ξ0) ∈ U
such that for all x ∈ X and φ : X → R a smooth function
with φ(x) = 0, (dφ)x ∈ U, we have that RΓφ≥0(F ) ' 0.

Theorem 16.4. If M is a coherent DX-module, then

SS(M ) = µs(SolX(M )).
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The generalized Cauchy-Kovalevskaya theorem provides SS(M ) ⊇ µs(SolX(M )). The other direction is
harder, and we omit it.

Recall that

SolX(M ) = RH omDX (M ,OX).

Example 93. Let M = OX and recall that there exists a resolution of OX as a DX -module, DX ⊗OX (Ω•X).
Then

SolX(OX) ' Ω•X ' CX , (by the Poincaré lemma), so,

SS(OX) = X ⊆ T ∗X.

Example 94. Let M = DX . Then SolX(DX) = OX – remember this is not as a D-module, it is as the sheaf
of solutions to a D-module. Recall that

SS(DX) = T ∗X.

Then µs(OX) = T ∗X. I.e. there are no directions in which SolX(DX) looks like CX . So given holomorphic
functions on some (open) domain with boundary, there will always be solutions that become singular on the
boundary. Phrased another way:

OX(X≤0)→ OX(X<0) is never an isomorphism.

Exercise 16.1. Determine what µs(F ) is measuring for points (x0, 0) ∈ T ∗X.

16.2. Holonomic complexes. Suppose M ∈ Dbhol(DX), complexes of DX -modules with holonomic coho-
mology sheaves. Recall M holonomic means that SS(M⊆T

∗X is Lagrangian. We can write

SS(M ) :=
⋃
i

SS(H i(M )) = Λ =
⋃
j

Λj

where Λ is a conic Lagrangian, and the Λj are irreducible Lagrangians.

Example 95. See Figure 40.

Figure 40. Decomposition of the singular support into irreducible Lagrangians.

Define

Yi = πX(Λi) = Λi ∩X,
some closed analytic irreducible subsets of X.

Lemma 16.5. Λi = T ∗
Y reg
i
X.

Idea: The Yi are giving a stratification on which solutions to M are locally constant.
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Theorem 16.6. Given a conic Lagrangian Λ, there exists a Whitney stratification of X,

X =
∐
j

Xj , Xj smooth,

such that each Yi is a union of some Xj.

Corollary 16.7. Λ ⊆
⋃
T ∗XiX.

Whitney conditions: These are conditions on the way the normal bundles to Xj ⊂ X behave (roughly,
they have to look locally constant).

Proposition 16.8. If M is a holonomic DX-module, F = SolX(M ) ∈ Db(CX), and µs(F ) = Λ is a
conic Lagrangian, then F is constructible with regards to Xj. I.e. H k(F )|Xj is locally constant with finite
dimensional fibres.

Figure 41. Rough picture of the Whitney condition.

17. Regular singularities.

We have now seen that if M is holonomic, then SolX(M ) is constructible (locally constant and finite dimen-
sional on each stratum, see Figure 42). We use this fact to motivate a new class of D-modules – those with
regular singularities.
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Figure 42. Stratification for a constructible sheaf.

Recall:

DRX(M ) = M
−n

d−→M ⊗OX Ω1
X

−n+1
→ · · · →M ⊗OX ΩnX

0

We can identify this with

DRX(M ) = RHomDX (OX ,M )[n].

How?

• OX has a resolution by free DX -modules

(DX ⊗OX

∧n
OX

TX
−n

→ · · · → DX ⊗OX

∧2
OX

TX
−2

→ DX ⊗OX TX
−1

→ DX
0

)
∼−→ OX

0
.

• So taking homs from this resolution by free DX -modules, we can move polyvector fields from the
LHS to its dual (forms) on the RHS. Then to agree with the degrees of DRX(M ) we need to shift
back down by n.

Now applying Verdier duality,

RHomDX (OX ,M )[n] = RHom(DXM ,DXOX︸ ︷︷ ︸
OX

)[n] = SolX(DXM ),

so,

DRX(M ) = SolX(DXM ).
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Example 96. If M = OX , DRX(OX) ' CX . So we have a functor

Db
coh(DX) Db(CX)

Db
hol(DX) Db

c(CX)

Db
rs(DX)

DRX

essentially surjective

where the bottom most category is the bounded derived category of DX -modules with regular singularities.

Definition 44. A holonomic DX -module M has regular singularities at x ∈ X if

SolX(M )x ŜolX(M )x HomDX,x(Mx, ÔX,x︸ ︷︷ ︸
C[[x1,...,xn]]

)

“Formal solutions of M .”

∼ defn

I.e. “every formal solution has a positive radius of convergence”.

Warning: This is a definition for analytic and not algebraic D-modules.

Then we define Dbrs(DX) to be complexes with cohomology objects regular singular DX -modules (i.e. regular
singular at every point).

Theorem 17.1 (Riemann-Hilbert Correspondence).

DRX : Db
rs(DX)

∼−→ Db
c(CX)

is an equivalence of triangulated categories.

Remark We no longer have the flat connections↔ π1-reps correspondence with complexes. Instead we need
to look at the exit path category. See, e.g. [AFR].

Example 97. Let

Conn(X) =

{
vector bundles on

X with flat connections

}
⊆ Db

rs(DX).

Then

Conn(X) {locally constant sheaves}

(V ,∇) DRX(V ,∇)

(F ⊗CX OX , d) F [n]

∼

There is a Poincaré lemma that says DRX(V ,∇) has no higher cohomology – it is all concentrated in degree
−n, thus

DRX(V ,∇) ' ker(∇)[n].

Remark The Riemann-Hilbert correspondence was proven independently by Mebkhout (1979) and Kashi-
wara (1980).

17.1. What does “regular singularities” mean?

Example 98. Let

M = DX/DX · P ' (DX
·P−→ DX),
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(we have an easy free resolution in this case). So

SolX(M ) ' OX
0

P (−)−−−→ OX
1
.

Hence

H 0SolX(M ) = ker(P )

H 1SolX(M ) = coker(P )

We can localize everything to look at germs of solutions around x ∈ X,

SolX(M )x ' OX,x
0

P (−)−−−→ OX,x
1

H 0SolX(M )x = kerP

H 1SolX(M )x = cokerP

Formal solutions are:

ŜolX(M )x = Ŝolx(M ) = ÔX,x
P−→ ÔX,x.

Assume X is 1d (so that M can be holonomic), and since we are working locally, without loss of generality
let X = C. Then

OX,x = O = C{{x}}

ÔX,x = Ô = C[[x]].

Example 99. Let P = x∂x − λ. Since x∂x(xn) = nxn, xn is an eigenvalue for x∂x. So the solution to
Pu = 0 is u = xλ – if λ is non-integral this requires a choice of branch of log (solution only makes sense on
some small simply connected region). How can we think of this?

...
...

x4 x4

x3 x3

x2 x2

x x

1 1

4−λ

3−λ

2−λ

1−λ

−λ

P

How do the kernel and cokernel compare for power series versus formal power series?

Case 1: λ 6∈ Z≥0; then all of the maps above are isomorphisms, so

SolX(M )x ' ŜolX(M )x ' 0.

Case 2: n = λ ∈ Z≥0. Then xn is in the kernel of P , and in fact

ker(P ) = Cxn.

Also, xn is not in the image of P , so

coker(P ) ∼= Cxn.
This holds for C{{x}} and C[[x]]. Thus,

D/D · (x∂x − λ) = D · xλ

is regular for every λ.

Example 100. P = x2∂x − 1. e
1
x is a solution – this has an essential singularity in the analytic sense.

Looking at this:
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• Observation 1: ker(P ) = ker(P̂ ) = 0. Why? e
1
x is the unique solution (to this first order ODE),

but it is not holomorphic at 0. So ker(P ) = 0.

• Observation 2: P̂ is an isomorphism.
• Observation 3: P is not surjective.

For P̂ :

P̂ (a0 + a1x+ a2x
2 + a3x

3 + · · · ) = −a0 + (a1x
2 − a1x) + (2a2x

3 − a2x
2) + (3a3x

4 − a3x
3) + · · ·

= −a0 − a1x+ (a1 − a2)x2 + (2a2 − a3)x3 + · · ·

Thus ker P̂ = 0 (solve the above equation term-by-term from a0).

Moreover, given a power series we can algebraically recursively solve for the values of a0, a1, . . .. E.g. there
exist a0, a1, . . . such that

P̂ (a0 + a1x+ a2x
2 + · · · ) = x.

Here we need
0
a0

+ a1
(−1)

x+ (−1)
a2

x2 − 2x3 + · · · (solving recursively).

It is not hard to see that this will have 0 radius of convergence.

Conclusion: P̂ is an isomorphism, so Ŝolx(M ) = 0.

But Solx(M ) turns out to have cokernel generated by x; so

Solx(M ) ∼= C[−1].

Thus,
M = D/D · (x2∂x − 1) is irregular at 0.

Continue assuming X is 1d, and since we are working locally, continue assuming X = C and x = 0.

Question: When is D/D · P regular?

Definition 45. δ(P ) = m− ord0(am), where

P = am(x)∂ + xm + am−1(x)∂m−1
x + · · ·+ a0(x),

and ord0 is the order of vanishing at 0.

We can think of D as D = O[∂].

Definition 46.
δ̂(P ) = max

0≤k≤m
{k − ord0(ak)}.

By convention, ord0(0) = +∞.

Example 101. If P = xN∂m, then δ(P ) = δ̂(P ) = m−N .

Definition 47. The index of P is

χ(D/D · P ) := χ(SolX(D/D · P )0) (which is a two term complex),

= dim(ker(P ))− dim(coker(P )).

Similarly we define

χ̂(D/D · P ) = χ(ŜolX(D/D · P ).

Exercise 17.1. Show that D/D · P is regular if and only if χ(D/D · P ) = χ̂(D/D · P ).

Theorem 17.2 (Index Theorem).

δ(P ) = χ(D/D · P )

δ̂(P ) = χ̂(D/D · P )
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Corollary 17.3. D/D · P is regular if and only if δ(P ) = δ̂(P ).

17.2. Regular singularities in the local setting. Recall the notation:

O := C{{x}} ∼= (OC)0 ⊃ m = xO, and Ô := C[[x]].

Remark C[x] ( C{{x}} ( C[[x]].

D := O[∂] ∼= (DC)0, [∂, f ] = ∂(f).

Define the field of fractions of O to be

K := O[x−1],

(i.e. local meromorphic functions).

Example 102. For D/D · P a D-module,

Sol(D/D · P ) = O
P−→ O,

Ŝol(D/D · P ) = Ô
P̂−→ Ô.

Notation convention: From now on,

Sol(P ) := Sol(D/D · P ).

This is a two term complex, so we only have

H 0(Sol(P )) = ker(P )

H 1(Sol(P )) = coker(P )

Remark ker(P ) ⊆ ker(P̂ ) and coker(P )� coker(P̂ ).

Recall we defined D/D · P to be regular if

Sol(P )
∼−→ Ŝol(P ) (quasi-isomorphism).

This turns out to be equivalent to

χ(P ) = χ̂(P ).

Remark Our previous remark tells us that we always have χ(P ) ≤ χ̂(P ).

Let

P =

m∑
k=0

ak(x)∂k, am(x) 6≡ 0.

Then we defined

δ(P ) = m− ord(am(x))

δ̂(P ) = max
0≤k≤m

(k − ord(ak(x)))

Theorem 17.4. We have that

δ(P ) = χ(P ) and δ̂(P ) = χ̂(P ).

Proof. The proof for δ uses analysis. The idea is that P − am(x)∂m is a compact operator between certain
Banach spaces (recall that P is Fredholm). Then there is an index theorem that says χ(P ) = χ(am(x)∂m).
See [B] for details.

The proof that δ̂(P ) = χ̂(P ) is a purely algebraic computation in manipulating power series. �
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Claim: δ(P ) = δ̂(P ) if and only if

P =

m∑
i=0

bi(x)θi, bi(x) ∈ K , θ = x∂,

and
bi(x)

bm(x)
is holomorphic.

Why? Start with am(x) = xm−δ(P )ãm(x), ãm(x) nonvanishing. Observe that

xm∂m = θ(θ − 1) · · · (θ − (m− 1)).

Example 103. P1 = x∂ − λ = θ − λ is regular.

Example 104. P2 = x2∂ − λ,

δ(P2) = −1

δ̂(P2) = 0

is not regular. What fails in this example?

P2 = x(x∂)− λ = xθ − λ,

and λ
x is not holomorphic.

Remark When we rewrite P in this form, ord(bi(x)) = ord(ak)− k.

Definition 48. A P of the type

P =

m∑
i=0

bi(x)θi, bi(x) ∈ K , θ = x∂,

with
bi(x)

bm(x)
is holomorphic,

is called Fuchsian.

Remark Locally, Fuchsian differential operators are regular. Globally, however, they may not be regular –
this is in fact a failure of Hilbert’s 23rd problem!

17.3. Another approach (still in the local setting).

(1) Pu = 0 an ODE.

(2) d
dx~u(x) = Γ(x)

x ~u(x), where

Γ(x) =



0 1 · · · 0 0

0 0 1
...

...
...

...
. . . 1 0

0 1
−b0
bm

−b1
bm

· · · · · · · · · −bm−1

bm


is a matrix in rational canonical form.

Then solutions u of the first equation are in one-to-one correspondence with solutions of the second equation

~u(x) =


u(x)
θu(x)

...
θm−1u(x)

 .
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The condition now becomes

P is Fuchsian if and only if Γ(x) is holomorphic.

18. Meromorphic connections.

Definition 49. A meromorphic connection is a finite dimensional K -vector space M , together with

∇ : M →M

satisfying the Leibniz rule

∇(fm) =
df

dx
m+ f∇m, f ∈ K ,m ∈M .

Let K̃ denote the space of (possibly multivalued) holomorphic functions on ∆∗ε = {0 < |x| < ε} for arbitrarily
small ε. “Possibly multivalued” should be interpreted as functions on the universal cover.

This generalizes the space of meromorphic functions in two ways:

• We are allowing multivalued functions.
• We are allowing essential singularities at 0.

We will use this as a solution space, after a remark on meromorphic connections.

Remark If M is a meromorphic connection, pick a K -basis e1, . . . , en of M ∼= K n. Then we can write

∇ = d−A, d the de Rham differential, A a matrix.

So horizontal sections ~u of M are the same as solutions to the equation

d

dx
~u(x) = A(x) · ~u(x).

Fact: If M ∼= K m is a meromorphic connection, then is has a complex m-dimensional space of solutions in
K̃ .

If ~u1(x), . . . , ~um(x) ∈ K̃ is a basis of horizontal sections, then we say that

S(x) :=
(
~u1 ~u2 · · · ~um

)
is a fundamental solution.

Definition 50. We say that f ∈ K̃ has moderate growth if for all open (a, b) ⊆ R and ε > 0 such that f is
defined on Sε(a,b) as shown in Figure 43, there exists N >> 0 such that

|f(x)| ≤ C|x|−N for all x ∈ Sε(a,b).

Note: M is a D-module via ∇ ↔ ∂.

Figure 43. Universal cover of punctured disk, with strip Sε(a,b) shown.
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Fact: If f is single valued, then moderate growth is equivalent to meromorphicity. (I.e. this is the way we
say a multivalued function does not have essential singularities.)

Theorem 18.1. For M a fixed meromorphic connection, the following are equivalent:

(1) M is equivalent to a system of the form,

d

dx
~v(x) =

Γ(x)

x
~v(x),

where Γ(x) ∈Mn(O) (n× n matrices).
(2) Same as above, but Γ is a constant matrix.

(3) All solutions to M in K̃ m have moderate growth.

Also, all of these are equivalent to M being regular.

Sketch that (3) implies (2). Let S(x) be a fundamental solution matrix. Take

lim
t→1

S(e2πitx) = G · S(x);

the LHS is another fundamental solution, so can be expressed in the form of the RHS. Call G the monodromy
matrix. Let Γ be some matrix such that

e2πiΓ = G,

where we can use the Jordan form for G ∈ GLnC to make finding such a Γ easier. Note that eΓ log(x) has the
same monodromy as S(x). So define

T (x) := S(x) · e−Γ log(x).

Then T (x) is single valued with moderate growth (our original assumption), so T (x) is meromorphic. Then
~u(x) is a solution of M if and only if T (x)−1~u(x) is a solution of

d

dx
(−) =

Γ(x)

x
(−)

where Γ is a constant matrix. �

Remark For those who are interested, the key ingredient in (1)⇒ (2) is Grönwall’s inequality. We will not
be discussing this.

Example 105. (1) d
dxu(x) = λ

xu(x) has solutions u(x) = xλ. This is a multivalued function: to make
sense of it, consider choosing a branch of log, of considering it as a function on the universal cover of
∆∗. This is regular.

(2) d
dxu(x) = − 1

x2u(x) has as solution the single-valued function u(x) = e
1
x . This is non-regular – e

1
x

can grow faster than any meromorphic function.

Corollary 18.2. If Pu = 0 is an ODE (so P ∈ D – still considering the local situation) then P is Fuchsian

if and only if all solutions to P in K̃ have moderate growth.

Definition 51 (/Proposition). A meromorphic connection is regular if there exists a finitely generated
O-submodule L ⊆M such that

ΘL ⊆ L, Θ = x∂,

and L generated M over K . We call L a lattice.

Remark This gives a coordinate free expression of regularity.

Given M as in the theorem, take a basis e1, . . . , em of M such that the connection matrix looks like

Γ(x)

x
, Γ(x) ∈Mn(O).

Then take L = Oe1 + · · ·+ Oem.
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Lemma 18.3. Given L as in the definition/proposition, we have that

L ∼= Om (L is free).

Thus we can think of L as a vector bundle on the unpunctured disk with connection

∇ : L→ L⊗ Ω1(d log(x))

induced from the original connection on M .

I.e. L is a vector bundle with connection that has logarithmic poles. Here

d log(x) =
dx

x
.

Example 106. From the first example above,

M = K and ∇ = d− λ

x
dx.

We already (implicitly) chose a trivialization e ∈M to write this, and then L = Oe ⊆M .

19. Global theory of regular singularities.

There are two directions in which we could generalize this topic:

• Irregular connections. (Unfortunately we won’t have time for this.)
• Global theory. (This will be our focus.)

Hilbert’s 21st problem: Let {a1, . . . ak} ⊆ A1 = C. Given G1, . . . , Gk ∈ GLnC, does there exist a Fuchsian
differential equation with singularities at {ai} and monodromy Gi at ai?

Remark In the local case, given G ∈ GLnC we can always find Γ ∈Mn(C) = gln such that

e2πiΓ = G d
dx~u(x) = Γ

x~u(x).

Note that:

(1) π1(A1 − {a1, . . . , ak}︸ ︷︷ ︸
=:U

) ∼= Fk, the free group on k letters.

Figure 44. Determining π1(U).

So,
{Local systems on U} ' Rep(π1(U)) ∼= GLn(C)k/GLn(C),

i.e. a choice of k matrices up to simultaneous conjugation (change of basis).
(2) A1 = C ⊆ P1 = C ∪ {∞} ∼= S2. So we could also demand in Hilbert’s 21st problem that ∞ is not a

singular point. For a long time, people thought that this problem would have a positive answer – in
fact it does not, but something “very close” does.
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19.1. Deligne’s “solution” to Hilbert’s problem.
First idea:

Rep(π1(U))

{
Locally constant

sheaves on U

}
{Flat connections on U}

L (OX ⊗CX L , d)

∼ ∼

Given a flat connections (V ∗,∇∗) on U , Deligne defined an extension M a meromorphic flat connection on

(P1, {a1, . . . , ak}). I.e. M is a locally free OP1

[
1

x−a1 , · · · ,
1

x−ak

]
-module such that M |U ∼= V ∗.

Note: For j : U ↪→ P1 you can always take

j∗(V
∗) ∈ OP1 -modules.

But in the world of analytic geometry, this sheaf allows for essential singularities, so is not a meromorphic
connection. (This cannot happen in the algebraic world.) The M we construct will be a subsheaf

M ⊆ j∗(V ∗).

Turns out: M has regular singularities at a1, . . . , ak; i.e. there is L ⊆M a vector bundle onP1 such that
∇ has log poles with respect to L.

Note: L may not be trivial! So this doesn’t necessarily correspond to what one might think of as a system
of differential equations on the plane.

I.e. This does not imply that Hilbert’s 21st problem is true as stated above. But you could consider this the
“correct” version (or “corrected” version) of the problem. Why? Because a differential equation is equivalent
to

(M , L,∇) together with a trivialization L ∼= Om.

But if L is not trivial, then the trivialization does not exist.

Remark M is a D-module: take its de Rham complex,

DRP1(M ) = Rj∗(DRU (V ∗)︸ ︷︷ ︸
local system on U in degree −1

).

19.2. Higher dimensions. If X is a complex manifold, D ⊆ X a hypersurface, then Deligne proved

Connreg(X,D) Conn(U)

flat connections on X, meromorphic
along D, with regular singularities

all flat connections on U = X −D

∼

We call this Deligne’s Riemann-Hlbert correspondence.

20. Algebraic story.

As far as Sam knows, there is no self-contained algebraic story – it has to pass through the analytic story.

Suppose X is projective, X ⊆ PN . Then X is an algebraic variety (Chow’s theorem). GAGA then implies
that

Connreg(Xalg, Dalg) ' Connreg(Xan, Dan) ' Conn(Uan).

Of course we can also restrict

Connreg(Xalg, Dalg)
∼ (defn)−−−−−→ Connreg(Ualg) ( Conn(Ualg).
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Example 107. On A1 = C = U define

V ∗ = (OU , d− λ) eλx.solutions

eλx is analytic and not algebraic (for λ 6= 0). But it is the solution to an algebraic equation. So (OU , d− λ)
is an algebraic D-module on A1,

DU/DU (∂ − λ),

and these are all inequivalent for different λ. Analytically, however, (V ∗)an ' (Oan
X , d) (i.e. we have equiva-

lence for all λ).

Fact: This algebraic D-module is not regular unless λ = 0.

Why? Need to embed A1 ↪→ P1. Then eλx 7→ eλ
1
w near infinity, which has an essential singularity.

Note that M alg = jalg
∗ (V ∗) is a meromorphic connection, but is not regular unless λ = 0.

21. Last remarks on Riemann-Hilbert.

We work in the analytic setting. Let X be a complex manifold, D ⊆ X a complex hypersurface, U = X −D.
Consider Figure 45:

Figure 45. The Riemann-Hilbert correspondence.

Claim that this diagram in Figure 45 commutes.

Example 108. Some possible choices of (X,D):

(1) Punctured Riemann surface as in Figure 46.
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Figure 46. Riemann surface X with punctures D.

(2) Z ⊆ X a closed subvariety, E ⊆ Z a hypersurface such that Z − E =: V is smooth – see Figure 47.

Figure 47. Situation described in example 2 above.

Let k : V ↪→ Z, i : Z ↪→ X. Given L a local system on V , we produce

i∗Rk∗(L ) ∈ Db
c(X).

In fact, these generate the category Db
c(X) as we range over all possibilities of (Z,E).

We have an even more refined picture of the Riemann-Hilbert correspondence in Figure 48:
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Figure 48. Refined Riemann-Hilbert correspondence.

We can define Perv(X) to be the image of (D-mod)rh under Riemann-Hilbert, so that the equivalence in
Figure 48 is tautological. But we can give an intrinsic characterisation as well.

Definition 52. An object F ∈ Db
c(X) is called a perverse sheaf if

• dim(supp(H j(F )) ≤ −j, and
• dim(supp(H j(DXF )) ≤ −j.

Remark For X a C-manifold with dimCX = n,

DX(F ) = RH omCX (F , ωX︸︷︷︸
CX [2n]

).

Example 109. CX [n] ∈ Perv(X). (Recall: CX [n] ∼= DRX(OX).)

• DX(CX [n]) = RH om(CX [n],CX [2n]) = CX [n].
• dim(supp(H −n(CX [n])) = n.

Example 110. Let i : Z ⊆ X be a closed submanifold. Then

i∗CZ [dimZ] ∈ Perv(X).

Remark All our shifts make it so that Poincaré duality is a “symmetric flip” across degree 0, rather than a
“shifted flip”.

Fact: For irreducible L ∈ Loc(U)[n], there is a unique irreducible subobject of

Rj∗(L ) ∈ Perv(X).

We call it IC(X,L ) ∈ Perv(X), the minimal extension/intermediate extension/Goresky-MacPherson exten-
sion. IC stands for intersection cohomology. This has the property that

IC(X,L )|U ∼= L .

What does this correspond to in the D-module world?

L ∈ Loc(U)↔M ∈ Connreg(X,D),
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and there is a unique choice of lattice L ⊆M such that the eigenvalues of Θ = f∂f have real part in [0, 1)
(a fundamental domain for the exponential function). Then

IC(X,L )↔ DX · L ⊆M ,

the D-module generated by L.

Remark Perv(X) is an artinian abelian category. So irreducible means no nonzero subobjects, and such an
object exists by the artinian property.

22. Wider context in maths.

Want to understand the topology of complex varieties.

Example 111. X
f−→ C a flat proper family of varieties over a curve as in Figure 49:

Figure 49. A flat proper family of varieties X over a curve C.

Under the Riemann-Hilbert correspondence we have

fdR
∗ (OX) Rf∗(CX) ∈ Db

c(C).

Generically on C, this is a vector bundle with a flat connection (the Gauss-Manin connection), and we have

Rif∗(CX)t = Hi(Xt;C).

Example 112. Take the family

X = {y2 = x(x− 1)(x− t)} f−→ (P1, {0, 1,∞})
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whose fibre over t are the solutions to the given equation. Then

R1f∗(CX) Picard-Fuchs equation on P1.

It is a classical result that this equation has regular singularities at {0, 1,∞}. Solutions of this differential
equation are hypergeometric functions.

If X is a compact Kähler manifold, then

Hi(X;C) =
⊕
p+q=i

Hq(X; ΩpX)︸ ︷︷ ︸
=:Hp,q(X)

.

This is called a Hodge structure. What happens to this structure as we vary X in a family?

Remark The Hodge structure also tells us how Hi(X;Z) ⊆ Hi(X;C) intersects with the decomposition.

Theorem 22.1 (A Torelli Theorem). If X is an elliptic curve, then X is determined by H1(X) with Hodge
structure:

H1(X;Z) H0,1(X) X

Z2 C

quotient

Hodge filtration: (Warning: Check that the p’s and q’s are correct below!)

F pHi(X,C) =
⊕
p′≥p
p′+q=i

Hp′,q(X).

As the fibres Xt vary with t, the F pHi(Xt) form a holomorphic subbundle of the corresponding flat connection
on, e.g., P1 − {0, 1,∞} (i.e. on the smooth locus).

This leads to the notion of a variation of Hodge structure,

(V ∇ F • VZ α : ker(∇)
∼−→ (VZ ⊗Z C)),

vector bundle
w/ flat conn.

filtration of V
locally const.
sheaf of free

abelian groups

together with a condition called Griffiths transversality. ∇ does not preserve the filtration (since e.g. this
would contradict the above Torelli theorem). Instead, we have the Griffiths transversality theorem:

∇F i ⊆ F i−1.

Then we have an analogy

D-module : vector bundle with flat connection

Hodge module : variation of Hodge structure

22.1. Further topics.

• Mixed Hodge modules (nearby/vanishing cycles)
• Moduli of flat connections/Moduli of Higgs bundles (Geometric Langlands)
• Beilinson-Bernstein (e.g. representations of sl2 with trivial central character correspond to D-modules

on P1)
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Figure 36. The Riemann-Hilbert correspondence.


