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1 Factorization Algebras and the General Structure of QFT

1.1 Lecture 1 (Philsang Yoo)

1.1.1 The Plan (this lecture series)

In this lecture series:

• What sort of thing is a QFT?

• What shorts of things can one do with a QFT?

Some dichotomies to consider – we will be considering the italicised versions:

• non-perturbative vs perturbative

• unitary vs complexified

• Lorentzian vs Euclidean

• states vs observables

In particular: from the beginning we are excluding the non-perturbative approach. The goal is to be entirely
rigorous, and we don’t have a rigorous non-perturbative approach yet.

Remark 1.1. • Even at the level of physics there is not a good framework for non-perturbative theories.

• Mathematically, complexified and Euclidean theories are important.

• The observables capture much of the important information in the theory.

Note that often in physics people often care about perturbative/unitary/Lorentzian (states vs observables is
a little less clear).

1.1.2 The Plan (today)

Today we will focus on

1. Classical BV

2. Quantum BV

and we’ll focus on the 0-dimensional case.

1.1.3 Classical field theory

For (d-dimensional) classical field theory, we have as input:

a. Md a spacetime manifold

b. F = F(M) a space of fields (usually sections of a bundles over M)

c. S : F → C an action functional

7



The output of this is

crit(S) = {α ∈ F | dS(α = 0)} (1.1)

where dS are the “equations of motion”.

Example 1.1 (Free scalar field theory).

M = (Md, g)

F(M) = C∞(M)

(Note: not worrying about the precise space of fields for the moment – at first approximation use smooth
functions.)

S :
F(M) C

φ
∫
M
φ(D +m2)φ

where D is the Laplacian. Then

crit(S) = {φ ∈ C∞(M) | (D +m2)φ = 0}.

(Note: not necessarily entirely rigorous – e.g. wouldn’t be quite correct for non-closed manifolds – but we’ll
worry about that later, perhaps.)

Example 1.2 (Chern-Simons theory).

M = M3

F(M) = Ω2(M ; g)

S :
F(M) C

A 1
2

∫
M
〈A, dA〉+ 1

6

∫
M
〈A, [A,A]〉

Then

crit(S) = {A ∈ Ω1(M ; g) |F (A) := dA+
1

2
[A,A] = 0}

i.e. flat connections. (Note: A might not necessarily be a global 1-form, but the critical point equations will
still single out flat connections.)

1.1.4 Classical field theory – BV formalism

From now on, fix

M = pt

F(M) = F(pt) = X a manifold (finite dimensional)

and
S : F(M) = X → C.

We want to revisit crit(S) following the BV formalism.

Note
crit(S) = {dS = 0} = Graph(dS)×T∗X X.
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We want to consider dCrit(S) the derived critical locus. On the level of functions,

O(Crit(S)) = O(Graph(dS))⊗O(T∗X) O(X);

but because we want to consider the derived critical locus, we will derive this tensor product:

O(dCrit(S)) = O(Graph(dS))⊗L
O(T∗X) O(X). (1.2)

Problem 1. Show O(dCrit(S)) ' (O(T ∗[−1]X), ιdS).

Special case: S = 0: O(X)⊗L
O(T∗X) O(X). Resolve O(X) with the Koszul resolution.

O(X) ' SymOX (TX [1]
id→ TX),

and so the derived tensor product is

SymO(X) TX [1] = O(T ∗[−1]X),

functions on the (−1)-shifted cotangent bundle.

So:

O(T ∗[−1]) = SymO(X)(TX [1]),

PV(X) =

n⊕
k=0

Γ(X,∧kTX)[k] =
⊕

PVk[k]

where PV is polyvector fields.

These are equipped with the Schouten-Nijenhuis bracket {−,−}, defined by

• ξ1, ξ2 ∈ PV1: {ξ1, ξ2} = [ξ1, ξ2]

• f, g ∈ PV0, ξ ∈ PV1: {ξ, f} = ξ(f), {f, g} = 0

• Extend by Leibniz rule.

This gives a Poisson bracket of cohomological degree 1.

Problem 2. A (−1)-shifted symplectic structure yields {−,−} a Poisson bracket of degree 1.

Problem 3. Check that1 ιdS = {S,−}.

So the input data yields,

(O(T ∗[−1]X), ιdS = {S,−}, {−,−}). (1.3)

Definition 1.1. A P0-algebra is (A, d, {−,−}) where (A, d) is a cdga2 and {−,−} is a Poisson bracket of
degree 1.

Poisson bracket: (A, d) cdga, {−,−} Poisson satisfies

d{a, b} = {da, b}+ (−1)|a|{a, db}.

Problem 4. (O(T ∗[−1]X), ιdS = {S,−}, {−,−}) is a P0-algebra.

Remark 1.2. T ∗[−1]X is a derived “space” – work homotopically, so e.g. rather than working with usual
functions one should appropriately (homotopically) resolve functions as a cdga (not an arbitrary cdga, but
can worry about this later maybe).

1ι is contraction operator.
2commutative differential graded algebra
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1.1.5 Gauge Theory

We will work with the “stack”
X = V/G

We are working with perturbation theory – i.e. we want to do perturbation theory about a specific point in
V . So we fix 0 ∈ V . Now by functions on V we mean things which can be seen near this point:

O(V ) = Ŝym(V ∗)

Moreover this formal information is captured by the Lie algebra of the group, so we can replace G by g. Now
by functions on X we mean invariant functions on V :

O(X) = O(V )g = HomUg(C,O(V ))

But of course we want everything to be derived! So really,

O(X) = RHomUg(C,O(V )) = C•(g,O(V )), (1.4)

which we call Chevalley-Eilenberg cochains.

If g acts on a module M , then as a graded vector space

C•(g,M) = Ŝym(g∗[−1])⊗M,

and the differential comes by taking the maps

g⊗M →M, , g⊗ g→ g,

turning them into maps

M → g∗ ⊗M,

g∗ → g∗ ⊗ g∗,

and then extending by the Leibniz rule.

So, as a graded vector space,

C•(g,O(V )) = Ŝym(g∗[−1])⊗ Ŝym(V ∗)

= Ŝym(g∗[−1]⊕ V ∗)

= Ŝym((g[1]⊕ V )∗)

= O(g[1]⊕ V ).

The differential dCE becomes a vector field ξCE of cohomological degree 1, satisfying

[ξCE , ξCE ] = 0.

So: if we start with X = V/G where G is “gauge symmetry” and work perturbatively at the point 0 ∈ V ,
we map replace V/G by

g[1]⊕ V

equipped with a vector field ξ of cohomological degree 1.
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1.1.6 Classical Master Equation

Now apply 1.1.5 to 1.1.4. Take
T ∗[−1]X with X = V/G,

so obtain

E = T ∗[−1](g[1]⊕ V )

= g[1]︸︷︷︸
ghost field

⊕ V︸︷︷︸
field

⊕V ∗[−1]︸ ︷︷ ︸
anti-field

⊕ g∗[−2]︸ ︷︷ ︸
anti-ghost

So
O(E) = O(T ∗[−1]X)

has two sources of differential:

ιdS = {S,−}
ξCE → ξCE = {Sgauge,−} symplectic vector field

Note that:

{S, S} = 0,

{Sgauge, S} = 0,

{Sgauge, Sgauge} = 0

(The second equation comes from invariance of the classical action.)

Now define:

SBV = S + Sgauge (1.5)

Then {SBV , SBV } = 0.

So now we have a P0-algebra
(O(T ∗[−1]X), {SBV ,−}, {−,−})

For future reference, write

SBV = Sfree(α)︸ ︷︷ ︸
deg 2

+ I(α)︸︷︷︸
deg≥3

(1.6)

If

Sfree(α) =
1

2
ω(α,Qα),

for a linear Q : E → E , then
{SBV ,−} = Q+ {I,−}.

More general perspective ahead!

Suppose we have a (−1)-shifted (derived) symplectic space (O(E), Q, {−,−}), and suppose that the the
underlying derived space is a linear space (E , Q).

Definition 1.2. I ∈ O(E) is said to satisfy the classical master equation (CME) if

QI +
1

2
{I, I} = 0.
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Claim: If I is a solution to the CME then

(O(E), Q+ {I,−}, {−,−})

is a P0-algebra.

Upshot: So we have another way to construct a P0-algebra – we could have just started with the (−1)-shifted
derived symplectic space.3

1.1.7 Chern-Simons theory revisited

Recall the setup:

• M = M3

• F(M) = Ω1(M, g)

• S : F(M)→ C given by

A 7→ 1

2

∫
M

〈A, dA〉+
1

6

∫
M

〈A, [A,A]〉

Some observations – let’s simplify matters first by working in the abelian case g = C:

(1) The theory has gauge symmetry (1.1.5). X = V/G = V ⊕ g[1], and the gauge symmetry part is

Ω0(M)[1] Ω1(M)
d={Sgauge,−}

(2) Running the BV formalism on T ∗[−1]X we have

Ω0 Ω1 Ω2 Ω3d d={S,−} d

For arbitrary g we get (Ω•(M ; g)[1], d).

1.1.8 Classical field theory to perturbative QFT

Idea:
Classical field theory perturbative QFT

dCrit formal moduli DG Lie algebra (or L∞)
picking a solution Koszul duality

Example 1.3. For Chern-Simons the bottom row of this is

LocG(M) LocG(M)P̂ (Ω•(M)⊗ gP , dP )P
[−1]

C•(g)

So in Σ[−1] = Ω• ⊗ g, with fields X,A,A∨, X∨,

SBV (α) =
1

2

∫
〈α, dα〉+

1

6

∫
〈α, [α, α]〉

3Check: was this the upshot?
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for α ∈ Ω• ⊗ g. The Sgauge contribution to this are the terms∫
〈[X,A], A∨〉∫
〈[X,X], X∨〉

– it is somewhat of a “miracle” of Chern-Simons theory that the resulting SBV winds up looking precisely
the same as the original action (just with terms now arising from forms located at every stage of the complex,
not just the connections in Ω1).

1.2 Lecture 2 (Kevin Costello)

Idea for today: Kevin wants to tell us how to go from

Integration by parts (in ∞ dimensions) Factorization Algebras

1.2.1 Homological Integration

Take as input:

• M manifold

• S ∈ C∞(M)

• dµ ∈ Ωn(M) a measure

Then can consider the operation4 ∫
eS/~dµ(−) : C∞(M)→ R((~)).

Can consider this as an algebraic operation by observing that∫
eS/~dµ(Div(V )) = 0

In local coordinates xi,
dµ = dx1 ∧ · · · ∧ dxn,

and
V =

∑
fi∂xi ,

then

DiveS/~dµ V =
∑ ∂f

∂xi
+

1

~
∑

fi
∂S

∂xi︸ ︷︷ ︸
dominates at ~ small

Lemma 1.1. If S has 1 isolated critical point, then

C∞(M)/Im(Div) = R((~)).

4Think the target should be R((~)) – R was written during the lecture.
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1.2.2 Divergence Complex

Can extend the observation
∫
eS/~dµ(Div(V )) = 0 by defining the Divergence Complex as the top line of the

following isomorphism:

· · · C∞(M,∧2TM) Vect(M) C∞(M)

· · · Ωn−2(M) Ωn−1(M) Ωn(M)

'

Div

' eS/~dµ'

d

Why do this? In infinite dimensions the top line exists, while there is no corresponding notion of “top form”.

Remark 1.3. The notation Div will always mean DiveS/~dµ.

In coordinates xi this complex is
R[xi, ε

i], |εi| = −1

with differential ∑ ∂

∂xi

∂

∂εi︸ ︷︷ ︸
“BV Laplacian”

+
1

~
∂S

∂xi

∂

∂εi

We’ve set this up in finite dimensions – now let’s blindly apply it in infinite dimensions and see what we get!

1.2.3 How does this work in ∞ dimensions?

Let X be a Riemannian manifold, and if ϕ ∈ C∞(X), define

S(ϕ) =

∫
X

ϕ∆ϕ.

Remark 1.4. C∞(X) is the infinite dimensional replacement for M .

We want to consider “
∫
ϕ∈C∞(X)

eS(ϕ)/~dµ” – square quotes because of the non-existent infinite dimensional

Lebesgue measure dµ.5

We have to replace R[xi]. Need to consider polynomial functions of ϕ. If U ⊆ X and f ∈ C∞c (U), define a
distribution by

Of (ϕ) =

∫
U

f(x)ϕ(x)dvol.

Polynomial functions of ϕ are expressions like

Of1Of2
· · · Ofn , fi ∈ C∞c (U).

This gives us our replacement for polynomial functions – now we also need to introduce an replacement for
vector fields.

Analog of R[xi, ε
i]. These will be polyvector fields, i.e. polynomial functions on Rn ⊕ Rn[−1].

Introduce new objects ψ ∈ C∞(X)[−1]. If g ∈ C∞c (U),

O?g(ψ) =

∫
U

gψ.

5Or not necessarily existent – for 1d X there are ways to construct this.
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Then the analog of R[xi, ε
i] is given by expressions like

Of1
· · · OfnO?g1

· · · O?gm , fi, gj ∈ C∞c (U).

The above expression is in degree −m.

Example 1.4. Vector fields on C∞(X) look like

Of1
· · · OfnO?g .

This expression gives a derivation of the algebra of polynomial functions

Oh1 · · · Ohm 7→
∑(∫

U

g · hi
)
Of1 · · · OfmOh1 · · · Ôhi · · · Ohm

Remark 1.5. Kevin has been hiding a little that we aren’t looking at all vector fields, due to the compact
support condition. Since C∞(U) is a vector space, TC∞(U) = C∞(U) at every point, and so polynomial
vector fields should look like

Of1 · · · OfnO?g
with g ∈ C∞(U). We want g ∈ C∞c (U) ⊂ C∞(U). Why?

Fields(U) is a sheaf on X. But, S is not really a function! An expression like
∫
ϕ∆ϕ does not converge.

Fields(U) has a foliation by 1st order variations with compact support, and

dS ∈ T ∗C Fields(U)

is a closed 1-form along the leaves. (Here TC Fields(U) is the subbundle of the tangent bundle defining the
foliation.)

If V ∈ Vect(Fields(U)), divergence involves a contraction

V ∨ dS,

but this only makes sense for V pointing along the leaves, i.e. V ∈ Γ(Fields(U), TC Fields(U)).

How do we define divergence? In finite dimensions, if

S =
∑

Aijxixj ,

then

Div
(∑

fi∂xi

)
=
∑ ∂fi

∂xi
+

1

~
∑

Aijfixj .

In ∞ dimensions, if

S(ϕ) =

∫
ϕ∆ϕ,

then6

Div : Of1
· · · OfnO?g 7→

∑
Of1
· · · Ôfi · · · Ofn

∫
gfi +

1

~
Of1 · · · OfnO∆g.

Remark 1.6. Once again, this will only make sense if we apply the compact support condition to g.

More generally we can define a divergence complex, where elements are of the form

Of1
· · · OfnO?g1

· · · O?gm
and the differential sends

Of1 · · · OfmO?g1
· · · O?gm 7→

∑
i,j

±Of1 · · · Ôfi · · · OfnO?g1
· · · Ô?gj · · · O

?
gm

∫
figj+

1

~
∑
±Of1

· · · OfnO∆gjO?g1
· · · Ô?gj · · · O

?
gm

6xi1 · · ·xin∂xj is analogous to Of1 · · · OfnO?g .
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Definition 1.3. If U ⊆ X we let Obsq(U) be this cochain complex.

Definition 1.4. A prefactorisation algebra on X is an assignment of a cochain complex F(U) to each open
U ⊆ X, and if

U1, . . . , Un ⊆ V
and the Ui are disjoint, then we have a cochain map⊗

F(Ui)→ F(V ).

These cochain maps satisfy an associativity constraint: if

W1, . . . ,Wn ⊆ V
Uij ⊂Wj , i = 1, . . . ,mj ,

with the Uij disjoint and the Wk disjoint, then⊗
F(Uij) F(V )

⊗
F(Wk)

commutes.

This definition captures some familiar structures.

Example 1.5. If F is “topological” on Rn then F gives an En-algebra. In particular, on R it yields an
associative7 algebra.

Example 1.6. If F is “holomorphic” on C, then F yields a vertex algebra.

Remark 1.7. Precisely what conditions are required for “topological” and “holomorphic” will be left a little
vague for now.

Example 1.7 (On R). If I ⊆ J are intervals, suppose that F(I)→ F(J) is always a quasi-isomorphism. In
particular

H∗(F(a, b)) = H∗(F(−∞,∞)) =: A

is an associative algebra. The associative product A ⊗ A → A is induced by the inclusion of two disjoint
intervals in a larger interval. (Note that this is not commutative – we cannot continuously exchange the two
disjoint intervals while keeping them disjoint.)

Lemma 1.2. U 7→ Obsq(U) is a prefactorisation algebra.

Key point: Obsq(U) is a commutative algebra, but the differential is not a derivation (i.e. does not respect
the product).

Example 1.8. OfO?g 7→ 1
~OfO∆g +

(∫
fg
)
· 1 (acts as a second order differential operator).

If U1, U2 ⊂ V are disjoint and α ∈ Obs2(U1), β ∈ Obsq(U2), then using Obsq(Ui) ⊂ Obsq(V ) these satisfy

d(αβ) = (dα)β ± αdβ;

so the differential respects the product on elements with disjoint support.

Example 1.9. Set α = Of and β = O?g , f ∈ C∞c (U1) and g ∈ C∞c (U2), then

d(OfO?g) =
1

~
OfO∆g +

(∫
fg

)
· 1︸ ︷︷ ︸

=0 if disjoint support

Remark 1.8. In fact we even get a factorisation algebra – the extra local-to-global axiom is a little cumbersome
however, and not particularly useful for us at the moment.

7A∞ = E1
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1.2.4 Canonical commutation relations

Consider the free scalar field on R:

• X = R

• ϕ ∈ C∞(R)

• S(ϕ) =
∫
R ϕ∆ϕ

Claim: H∗(Obsq(a, b)) is R[p, q] with [p, q] = ~.

What are linear observables? Of for f ∈ C∞c ((a, b)). Then in cohomology

[Of1 ] = [Of2 ]

if there exists g such that
∂2

∂x2
g = f1 − f2,

as dO?g = O∆g. Then

C∞c ((a, b))/∂2
xC
∞
c ((a, b))

is 2-dimensional, spanned by

• f a bump function normalised to
∫
f = 1, and

• ∂f
∂x

Set q = Of , with
∫
f = 1, and p = Of ′ ,

p(ϕ) =

∫
f ′ϕ = −

∫
fϕ′.

To make life easier introduce δ-functions. Represent

q = Oδx=0

p = Oδ′x=0

How do we compute [p, q]?
Oδx=0

Oδ′x=ε
−Oδx=0

Oδ′x=−ε

Notice that
d
(
~O?δ[−ε,ε]

)
= O∂2

xδ[−ε,ε]
= Oδ′x=ε

−Oδ′x=−ε

is a homotopy between measuring momentum at x = ±ε. Then

d
(
~Oδx=0

O?δ[−ε,ε]
)

= Oδx=0
(Oδ′x=ε

−Oδ′x=−ε
) + ~

∫
δx=0δ[−ε,ε].

In cohomology this becomes
q0pε − q0p−ε = −~.

Upshot: Often in physics the canonical commutation relations are imposed by fiat. This calculation shows
that they can in fact actually be derived from prior principles.

Example 1.10. Set X = Y × R,
∫
ϕ∆ϕ, and f ∈ C∞(Y ) and eigenvector for ∆Y . Set

q = Ofδt=0

p = Ofδ′t=0

Then we can compute
q(0)(p(ε)− p(−ε)) = ~ + terms which → 0 as ε→ 0.
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1.2.5 Chern-Simons

Philsang introduced this last lecture: fields of CS for U(1) are

(Ω∗(M)[1], d).

The observables are
Obsq(U) = Sym∗ (Ω∗c(U)[2])

which we interpret as polynomials on fields and antifields.

This example is a little different to the previous one – the O?g functions are already built in since our space
of generators is a complex. If fi ∈ Ω∗c(U)[2],8

d(Of1
· · · Ofn) =

∑
±1

~
Of1
· · · Odfi · · · Ofn +

∑
±Of1

· · · Ôfi · · · Ôfj · · · Ofn
∫
fifj .

Example 1.11 (Linking number). H0(Obsq(R3)) = R((~)), because there is a spectral sequence

Sym∗
(
H∗c (R3[2])

)
⇒ H∗(Obsq(R3)).

Then given two knots K1,K2 ⊂ R3,

[OδK1
· · · OδK2

] ∈ H0(Obsq(R3))

is equal to ~× (linking number).

Proof: K1 = ∂S, S a surface. δK1
= dδS . Then

d (~OδS · OK2
) = OδK1

· OδK2
+ ~

∫
δSδK︸ ︷︷ ︸

= linking number

.

1.3 Lecture 3 (Philsang Yoo)

1.3.1 The story so far...

There are three dichotomies:

• 0-dimensional vs d-dimensional

• free vs interacting

• classical vs quantum

The blue items were the topic of the first lecture; the orange items were the topic of the second lecture.

The following table reviews what we have covered thus far (and also sets some of the notation for the lecture):

8This is precisely the space of generators for the symmetric algebra.
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0-diml d-diml

free theory (O(E), Q, {−,−}) (Oloc(E), Q, {−,−})
E T ∗[−1] = V ⊕ V ∗[−1] C∞(M)⊕ Ωn(M)[−1]

free action Sfree(x) =
∑
xiAijx

j Sfree(φ) =
∫
M
φDφdvol

O(E) PV(V ) = C[xi, ξi], |ξi| = −1 Sym(C∞c (M)⊕ C∞c (M)[1])

linear observable - degree 0 xi Of (φ) =
∫
fφ dvol, f ∈ C∞c (M)

linear observable - degree 1 ξi O?g(ψ) =
∫
gψ, g ∈ C∞c (M)

classical Q ιdSfree =
∂Sfree
∂xi

∂
∂ξi

=
∑
Aijx

j ∂
∂ξi

D

on vector fields pn(x)ξk 7→ pn(x)
(∑

Akjx
j
)

Of1
· · · OfnO?g 7→ Of1

· · · OfnODg
∆ xiξj 7→ δij OfO?g 7→

∫
fg

quantum Q+ ~∆
∂Sfree
∂xi − ~

∑
∂
∂xi

∂
∂ξi

factorization algebra (O(T ∗[−1]V ), Q+ ~∆) (Sym(C∞c (−)⊕ C∞c (−)[1]), Q+ ~∆)

Here (E , Q) is a (−1)-shifted symplectic space. The subscript loc did not appear in previous lectures – but
we will see that we need to include it later today.

Recall that we defined the divergence complex by considering the isomorphism from finite dimensions:

Γ(M ;∧nTM ) · · · C∞(M,∧2TM) Vect(M) C∞(M)

O(M) · · · Ωn−2(M) Ωn−1(M) Ωn(M)

∆µ

∨µ'

∆µ

∨µ'

∆µ

' ∨µ'

d d d

If the measure is related to the usual Lebesgue measure by

µ = eS/~dµLeb

then

∆µ = ∆Leb +
1

~
ιdS

so that
~∆µ = ιdS + ~∆Leb.

We are interested in the resulting complex:

(O(T ∗[−1]X)[[~]], ιdS + ~∆).

BV/BD quantisation.

Definition 1.5. A Beilinson-Drinfeld algebra (BD-algebra) is a triple (A, ·, {−,−}) where (A, ·) is a graded
commutative algebra equipped with a differential d (d2 = 0), flat over R[[~]], and {−,−} is a Poisson bracket
of cohomological degree 1 such that

d(a · b) = da · b+ (−1)|a|a · db+ ~{a, b}.

Remark 1.9. Since d is not a derivation for the multiplication, the cohomology is no longer a commutative
algebra – its multiplication

Recall that given a (−1)-shifted symplectic space with a vector field (E , Q) with functions (O(E), Q, {−,−}),
we say that I ∈ O(E) satisfies the classical master equation (CME) if

QI +
1

2
{I, I} = 0.
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We can also produce from (E , Q) the BD-algebra (O(E)[[~]], Q + ~∆, {−,−}), and say that I satisfies the
quantum master equation if

QI +
1

2
{I, I}+ ~∆I = 0

or equivalently,
(Q+ ~∆)eI/~ = 0.

Definition 1.6. A BV/BD quantisation of a P0-algebra A is a BD-algebra Ã such that Ã|~=0 = A.

Moving on up

For a d-dimensional interacting classical theory

(O(E), Q, {−,−})

we want to try to solve

QI +
1

2
{I, I} = 0.

This is naive!

1) {−,−} is not defined on O(E)

2) We don’t want an arbitrary functional I

1.3.2 Local functionals

Idea: A functional F is local if its kth homogeneous component fk is of the form

φ 7→
∫
M

(D1φ) · · · (Dkφ)dvol

for linear differential operators Di.

Definition 1.7.
Oloc(E) := DensM ⊗DMO(J (E))

where

• DM : differential operators on M

• J (E): ∞-jets

• O(J (E)) = P Diff(E , C∞M ) (polydifferential operators)

• φ 7→ F (φ), F (φ)(p) depends only on ∞-jets

If M is compact,

Oloc(E) O(E)

L i(L)

i

where

i(L)(φ) =

∫
M

L(φ).

Remark 1.10. The bracket was not previously well-defined. The bracket is now well-defined on local func-
tionals. So now we want to solve (Oloc(E), Q+ {I,−} = {S,−} = ιdS , {−,−}).
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For a d-dimensional interacting quantum

(Oloc(E)[[~]], Q+ ~∆, {−,−})

we want to try to solve

QI +
1

2
{I, I}+ ~∆I = 0

or (equivalently)
(Q+ ~∆)eI/~ = 0.

Problem: ∆ is not defined even on Oloc(E)! This is a problem of physical origin (related to UV divergences).

1.3.3 Definition of Quantum Field Theory (after Costello)

In the 0-dimensional case,
(V, ω) (−1)-shifted symplectic

leads to a Poisson bivector
K ∈ (Sym2 V )[1]

and the BV differential ∆ is given by contracting K. We then obtain {−,−} from ∆ (or from K – it is
precisely the Poisson bracket associated to the bivector).

In a d-dimensional theory, starting from (E , ω), we obtain

K0 ∈ (E⊗̂E)S2︸ ︷︷ ︸
∼=Sym2(E)

[1]

such that
ω(K0(x, y), φ(x)) = φ(y).

Here, E are distributional sections of E .

But! “∆0” = contracting with K0 isn’t defined. (Problem? Distributions don’t multiply.9)

Idea to fix: effective field theory – mollify K0!

Example 1.12. For scalar field theory, there exists a heat kernel regularization Kt such that

ω(Kt(x, y), φ(x)) = (e−tDφ)(y),

and Kt is smooth for t > 0.

Return to our general setting (E , Q).

Definition 1.8. A gauge-fixing operator
QGF : E → E

is a differential operator of cohomological degree -1 such that

[Q,QGF ] = D

is a generalized Laplacian.

Example 1.13 (Scalar field theory).

C∞(M) Ωn(M)

Q = (D +m2), QGF = id
9If their support is not disjoint.
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Example 1.14 (Chern-Simons theory).

Ω0(M) Ω1(M) Ω2(M) Ω3(M)d d d

Q = d, QGF = d∗

Note that the space of possible gauge fixings is the space of metrics (to determine the adjoint to d).

Remark 1.11. The main results depend on gauge-fixing in terms of homotopy data. In practice the space of
gauge-fixings is contractible (see Example 1.14).

Now, QGF yields D = [Q,QGF ], and there is a corresponding operator KL such that

ω(KL(x, y), φ(x)) = (e−LDφ)(y),

and we use −KL to define the BV-Laplacian ∆L (and the corresponding bracket {−,−}L).

Now recall: We wanted I ∈ Oloc(E) satisfying

QI +
1

2
{I, I}+ ~∆I = 0,

but we realised that this doesn’t make sense. So we introduced this scaling/mollification and try to solve the
QME at scale L

QI +
1

2
{I, I}L + ~∆LI = 0

for I ∈ (O(E)[[~]], Q+ ~∆, {−,−}L).

Remark 1.12. We are no longer working in the UV, but at finite length scale – correspondingly we do not
expect I to be local ; instead it will depend on a finite length scale.

What we are aiming for is
{I[L]} effective action

such that I[L] solves the QME at scale L.

Question: How are KL and K0 related?

Define a propagator

P (ε, L) :=

∫ L

ε

(QGF ⊗ 1)Kt dt.

Proposition 1.3. P (ε, L) gives a cochain homotopy with respect to Q between Kε and KL.

Proof sketch. We have:

• Kt is the kernel for e−tD

• P (ε, L) is the kernel for
∫
QGF e−tD

So [
Q,

∫
QGF e−tD

]
=

∫
[Q,QGF ]e−tD

=

∫ L

ε

De−tD = e−εD − e−LD

and hence
(Q⊗ 1 + 1⊗Q)P = Kε −KL.
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Remark 1.13. In the above proposition:

• P ∈ Sym2(E)

• K ∈ Sym2(E)[1]

Define ∂P (ε,L) as contraction with P (ε, L); then

[∂P (ε,L), Q] = ∆L −∆ε

with ∆L = ∂KL , ∆ε = ∂Kε .

Remark 1.14. All of the scale dependent operators we have defined are appropriately equivariant with respect
to the scaling action; so one expects the scale dependent QME to also be “appropriately equivariant”.

Definition 1.9. A homotopy renormalization group flow is a map

W (P (ε, L),−) : O(E)[[~]]→ O(E)[[~]]

defined by
W (P (ε, L), I) := et∂P (ε,L)eI/~.

Remark 1.15. Useful way to think about this is in terms of Feynman diagrams (contraction of propagators
– keep in mind that now the propagators depend on the length scale).

Proposition 1.4. I ∈ O(E)[[~]] satisfies QME at ε if and only if W (P (ε, L), I) satisfies QME at L.

Proof. Proof as exercise. Need to combine the fact

[∂P (ε,L), Q] = ∆L −∆ε

with the expression
W (P (ε, L), I) := et∂P (ε,L)eI/~.

Suppose we have I[ε] which solves the QME at scale ε. Then we know how to obtain a solution of the QME
at scale L – we just take

I[L] = W (P (ε, L), I[ε]).

So why did we bother introducing all of these scale dependencies?

Main point: “We wanted I ∈ Oloc(E)[[~]] solving QME”. So we need to make sure that we don’t forget
about locality!

Definition 1.10. A pre-quantum field theory is {I[L]} such that

(1) I[L] = W (P (ε, L), I[ε])

(2) I[L] becomes local as L→ 0

The following theorem is due to Costello.

Theorem 1.5. There exists a non-canonical bijection

{O+
loc(E)[[~]]} ↔ {pre-theories}

where the “+” superscript indicates terms of cubic order and higher (interaction terms). The choice of
bijection is given by a choice of “renormalization scheme” (roughly a specification of how to select out the
“singular part” of a function and introduce counterterms).
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Definition 1.11. A quantum field theory is a pre-quantum field theory such that each I[L] satisfies the QME
at L.

Remark 1.16. Solving the QME is a difficult problem, and has obstructions (which can be studied with usual
obstruction theory methods – suppose a solution I(n)[L] is defined modulo ~n and determine the class that
obstructs extending this to ~n+1).

Computing I[∞] can give interesting results – i.e. non-trivial invariants:

• Grady-Gwilliam: Â-genus from 1d topological QM

• Costello: Witten genus from β − γ system

1.4 Lecture 4 (Kevin Costello)

1.4.1 Towards interactions

Recall the setup for the scalar field: ϕ ∈ C∞(M),
∫
ϕDϕ. We’re changing notation now however – D =

∑
∂2
xi

is the usual Laplacian (not the one with nonnegative spectrum).

If U ⊆M , fi, gj ∈ C∞c (U),

Obsq(U) = cochain complex spanned by Of1 · · · OfnO?g1
· · · O?gm in degree −m

The differential on this complex is

dObsq(U) = ∆BV +
1

~
Q

where ∆BV contracts one f with one g,

∆BV (OfO?g) =

∫
U

fg,

i.e. ∆BV is “divergence with respect to the Lebesgue measure”.

Q is a derivation,
QO?g = ODg

where D is the Laplacian. So Q is the Lie derivative of a vector field on S(ϕ) =
∫
ϕDϕ.

In this interacting case,

S(ϕ) =

∫
ϕDϕ+

∫
ϕ4

we need to add a term

{I,−}, I =

∫
ϕ4.

The extra term is the Lie derivative of a vector field on the function

ϕ 7→ ϕ4.

Then

{I,O?g} =

∫
x∈M

g(x)ϕ(x)3.

Problem! There is a technical but very important problem at this stage. The function

ϕ 7→
∫
gϕ3
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is not in the class of functions we considered. It’s not of the form∫
M3

f1(x1)f2(x2)f3(x3)ϕ(x1)ϕ(x2)ϕ(x3)

for fi ∈ C∞c (M). Instead, ∫
gϕ3 =

∫
g(x1)δx1=x2=x3︸ ︷︷ ︸

This is a distribution!

ϕ(x1)ϕ(x2)ϕ(x3).

Tentative Solution: Enlarge our allowed functions to include things like

ϕ 7→
∫
D(x1, . . . , xn)ϕ(x1) · · ·ϕ(xn)

where D is a distribution on Mn with compact support.

New Problem! The BV Laplacian is ill-defined on this class of “functions”. Taking f, g ∈ Dc(U), we have

∆BV (OfO?g) = “

∫
f(x)g(x)′′

which is ill-defined, since we cannot multiply distributions.

Summary:

• In the free theory, the “functional measure” was defined on a class of distributions.

• As soon as we introduce interactions, we are required to integrate over products of observables coming
from this class of “functions” – and distributions don’t multiply.

Actual Solution:

• Use observables which are distributions.

• Mollify ∆BV to ∆ε where

∆ε(OfO?g) =

∫
Kε(x1, x2)f(x1)g(x2)

such that Kε is smooth and the expression reproduces ∆BV as ε→ 0.

We saw that
∆0 −∆ε = [Q, ∂P ε0 ]

where

P ε0 =

∫ ε

0

Kt

so that on Q-cohomology, this mollification does nothing. Here, ∂P ε0 contracts two Of ’s by

∂P ε0 (Of1
Of2

)→
∫
f1(x1)f2(x2)P ε0 (x1, x2).

As different scales, we have the relation between mollifications

∆ε −∆L = [Q, ∂PLε ].

The differentials
1

~
Q+ ∆ε
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are up to homotopy independent of ε.

What about if we ad an interacting term? Then the differential

1

~
Q+ ∆ε + {I[ε],−}ε

is up to homotopy independent of ε as long as I[ε] satisfies “homotopical RG-flow” (and I[ε] must satisfy the
QME to ensure that the differential squares to zero).

• Fact: algebras for interacting theories can be constructed once we have {I[L]} satisfying the axioms
from Phil’s talk.

• Solutions {I[L]} to these axioms can be found by obstruction theories.

• In fancy language (e.g. Lurie’s paper on deformation theory), the solutions form a “formal moduli
problem”.

• In the case of free scalars, solutions {I[L]} to these axioms are in noncanonical10 bijection with La-
grangians ∑

~i
∫
Pi(ϕ, ∂ϕ, ∂

2ϕ, . . .)

(a series in ~ of integrals over polynomials in the fields and their derivatives).

1.4.2 Renormalizability

Problem: There seem to be too many theories.

Example 1.15.
∫
R4 ϕ

10 should be a “bad” interaction; so why do we include it?

R>0 acts on Rn. If F is a factorisation algebra on Rn then so is its pullback λ∗F .11 So R>0 acts on the set
of factorisation algebras on Rn.

Definition 1.12. This action is called the renormalisation group flow (RG flow).

F is a fixed point if
λ∗F ∼= F

(this is data).

Example 1.16. The factorisation algebra of a free massless scalar field is a fixed point: if ϕ ∈ C∞(Rn),
make λ ∈ R>0 act on ϕ by

ϕ(x)→ λn/2−1ϕ(λx),

then
∫
ϕDϕ is scale invariant.

If λ acts on f ∈ C∞c (U) by
f(x)→ λn/2+1f(λx)

and on g by
g(x)→ λn/2−1g(λx)

then d on Obsq(U) spanned by Of1
· · · OfnO?g1

· · · O?gm is scale invariant.

d = ∆BV +
1

~
Q

commutes with the R>0-action.

10Depending on a renormalisation scheme.
11This is a new factorisation algebra for each scale λ – factorisation algebras (unlike sheaves) only pull back under local

isomorphisms. Another way to discuss this would be to consider it as a factorisation algebra valued in sheaves on R>0.
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What about deformations?

M = {moduli of translation invariant factorisation algebras on Rm}
TfreeM = {Lagrangians}

R>0 acts on TfreeM (tangent space at the free theory). We can compute this action (skipping small subtleties)
by asking how a Lagrangian L(ϕ) changes under

ϕ(x)→ λn/2−1ϕ(λx).

In dimension 4, ∫
R4

ϕn︸︷︷︸
wt n

dx1 · · · dx4︸ ︷︷ ︸
wt −4

transforms by λn−4. If we do some small calculations and consider SO(4)-invariant Lagrangians, then the
tangent space looks like Figure 1.

Figure 1: Tangent space to free theory with leading order RG-flow attracting and repelling directions.

Terminology: If we are flowing to large scales (i.e. flowing to the IR) then

• Repelling directions = Relevant

• Attracting directions = Irrelevant

• Fixed points = Marginal

For the 4-dimensional free theory:

• Marginal:
∫
ϕ4

• Irrelevant: lots of them, e.g.
∫
ϕn for n > 4

• Relevant: Finitely many –
∫
ϕ,
∫
ϕ2,

∫
ϕ3
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So, even though the space of theories is∞-dimensional, if we look at things from far away only finitely many
parameters matter.

Conversely, at small scales, only marginal and relevant interactions can have good behaviour.

1.4.3 Corrections to the flow

Consider ∫
ϕDϕ+ c

∫
ϕ4.

We claimed that to leading order in c this is scale invariant. Does this extend beyond leading order? No:

Figure 2: Subleading order corrections to the RG-flow.

There is an RG flow trajectory in the space of theories with coordinate c, where the vector field which
generates the flow looks like

c2
d

dc
+O(c3)

d

dc
.

The effect of the subleading term is to turn one of the first-order attracting directions into a repelling direction
(Figure 2). Only one of these directions (the attracting direction which flows to a fixed point) is physically
reasonable. I.e.

• c > 0 “good” theory (unitary)

• c < 0 “bad”

• Sign is such that in the IR, c > 0 flows down to c = 0.

Remark 1.17 (Yang-Mills Theory). An important discovery from the 1960s – the opposite sign exhibits
attracting behaviour. I.e. the “good” coupling constant flows to 0 in the UV (asymptotic freedom).

How to compute.

There are two methods of computation:
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(1) Understand the leading order corrections to the factorisation algebra as we deform away from a free
theory.

(2) Compute with the I[L]’s.

Notation: Rλ = how λ ∈ R>0 acts on ϕ ∈ C∞(R4).

Want to define an action on I[L](ϕ). Define

Rλ(I[L])(ϕ) = I[λ2L](Rλϕ),

KL = e−
‖x1−x2‖

2

L L−n/2

Check: If I[L] satisfies the axioms, so does Rλ(I)[L].

Computation:

• Start with
∫
ϕDϕ+ c

∫
ϕ4

• Build I[L](c). (Family of scale dependent interactions depending on the parameter c.)

• Rλ(I)[L](c) = I[L](c+ ~c2 log λ+O(c3)).

Naively I[L] = limε→0W (PLε , I), which can be expressed as in Figure 3, where I = c
∫
ϕ4.

Figure 3: Naive calculation of I[L] in ϕ4 theory.

Sometimes this limit doesn’t exist, so we introduce ε-dependent terms

I → I − ICT (ε)

called counter-terms. By studying these we’ll see the flow.

• Tree diagrams: These are fine.
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• 1-loop: There is a “baby bird” diagram,

So the 1st counterterm is: ~ 1
ε

∫
ϕ(x)2.

And there is a “hard candy” diagram,

=

∫
x1,x2∈R4

ϕ(x1)2ϕ(x2)2PLε (x1, x2)2

This is equal to ∫ L

t1,t2=ε

∫
x1,x2

ϕ(x1)2ϕ(x2)2t−2
1 t−2

2 r

(
− 1
t1
− 1
t2

)
‖x1−x2‖2 ;

integrating over x1 − x2, we get∫ L

t1,t2=ε

∫
x

ϕ(x)4t−2
1 t−2

2

(
t1t2
t1 + t2

)2

dt1dt2 ∼ log ε

∫
ϕ4.

When we scale everything:

I[L] = lim
ε→0

W (PLε , I − ICT (ε)),

RλI[L] = lim
ε→0

W (Pλ
2L

λ2ε , I −RλICT (λ2ε))

So if we scale everything,

ε−1

∫
ϕ2

is fixed. So

log ε

∫
ϕ4 → log ε

∫
ϕ4 + 2 log λ

∫
ϕ4
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Conclude: If we scale

ICT → ICT + ~ log λ

∫
ϕ4

this means

I → I − ~ log λ

∫
ϕ4.

1.5 Lecture 5 (Kevin Costello)

Recall that last lecture we saw: given a factorisation algebra F on Rn, there is a scaling action by λ ∈ R×
on Rn,

λ(x) = λx

under which we can pull back to obtain a new factorisation algebra, λ∗F .

This gives a flow on the space of factorisation algebras: the RG-flow.

Last time, we computed this for ϕ4 theory. It was quite an involved computation.

Today: More direct computation, using Poisson version of factorisation algebras.

1.5.1 Classical observables

Consider the classical observables of some theory, Obscl(U), U ⊂ Rn, defined by

Obscl(U) =
{functions on fields on U}

equations of motion

If x ∈ U , we want to consider

Obsclx ∈
⋂
V 3x

Obscl(V );

in his talk today, Tudor called these local operators and used the notation Ops.

For a free scalar field theory on Rn,

Of (ϕ) =

∫
U

fϕ, f ∈ C∞c (U).

• We allow f to be a distrobution.

• If f is supported at x ∈ U then
f = (derivatives)∂i1x1

· · · ∂inxnδx.

Set
dO?g = O∆g.

Then g is also supported at x, and we find at the level of cohomology that(∑
∂2
xi

)
∂i1x1
· · · ∂inxnδ = 0.

Defining
D0 = R[∂x1 , . . . , ∂xn ]

we have found that the cohomology of local observables is

Sym
(
D0/

∑
∂2
xi

)
.
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Remark 1.18. Recall that at the quantum level,

dqO?g = ~−1O∆g,

dq(OfO?g) = 1

∫
fg

and we have that
d := dcl = lim

~→0
~dq.

Alternate description.

Obscl0 = Sym
(
D0/

∑
∂2
xi

)
This is a commutative algebra with n commuting derivations. It is generated by 1 element,

Oδ : ϕ 7→ ϕ(0)

subject to the relation (∑
∂2
xi

)
Oδ = 0.

In an interacting theory, e.g. ϕ4, it’s easy to see that Obscl0 is generated in this sense by O with the relation
that ∑

∂2
xiO +O3 = 0.

Today, we will show that Obscl0 has a “Poisson bracket”.12

1.5.2 Reminder on Deformation Quantisation

If we have a classical mechanical system, with a commutative algebra A of operators, then A has a Poisson
bracket defined as follows.

Let Â be the non-commutative quantum algbera, defined modulo ~2 by the following rule: if α, β ∈ A, let
α̂, β̂ be lifts to Â. Then

{α, β} = lim
~→0

1

~
[α̂, β̂].

Note:

• [α̂, β̂] = 0 modulo ~

• This does not depend on our choice of lifts of α and β.

In the factorisation algebra story we have (Figure 4)

[α̂, β̂] = α̂(0)β̂(ε)− α̂(0)β̂(−ε).

This commutator is the obstruction to α̂(0)β̂(ε) being a continuous function of ε.

If there’s no Hamiltonian,
∂

∂ε
β̂(ε) = 0,

so α̂(0) · β̂(ε) is constant in the region ε 6= 0. So the two-dimensional space of such functions is spanned by

α̂(0)β̂(ε) = c1(indept. of ε) + c2(δε>0 − δε<0)︸ ︷︷ ︸
continuity obstruction

12Beware: scare quotes.
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Figure 4: In the ε→ 0 limit this calculates [α̂, β̂].

and we have made explicit that the obstruction to being continuous is the commutator.

To write this down in general, we need some notation:

Cω(Rn \ 0) {real analytic functions}

Cω+(Rn \ 0) {real analytic functions which extend to a continuous function on Rn}

E.g. r log(r) ∈ Cω+(Rn \ 0).

Theorem 1.6. Consider any classical field theory. Let Obscl0 be the point observables (taking cohomology).
Then there exists a map

{−,−}OPE : Obscl0 ⊗Obscl0 → Obscl0 ⊗
(
Cω(Rn \ 0)

Cω+(Rn \ 0)

)
{−,−}OPE is a derivation in each factor, and a map of modules for the Lie algebra Rn which also acts13 on
Cω(Rn\0)
Cω+(Rn\0) .

The bracket of Theorem 1.6 is defined as follows:

If Obsq are the observables of a quantization defined mod ~2, take lifts of O1,O2 ∈ Obscl0 , to Ô1, Ô2 ∈ Obsq0
(see Figure 5)

Ô1(0) ∈ Obsq(D(0, r)), ∀r
Ô2(x) ∈ Obsq(D(x, r)), ∀r

Ô1(0)Ô2(x) ∈ Obsq(D(0, s)), ∀x not too close to 0, |x| < s− r.

Better: For all x 6= 0, |x| < s,
Ô1(0)Ô2(x)

extends across x = 0 modulo ~.

Can show: Failure to extend across x = 0 is in

~
Cω(Rn \ 0)

Cω+(Rn \ 0)
⊗Obscl0 ;

so define

{O1,O2}OPE = lim
~→0

1

~

(
obstruction to extending Ô1(0)Ô2(x) across x = 0

)
13This action may be defined with some non-standard signs, so be wary of potential sign issues in the future.
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Figure 5: Radii of convergence for lifts of local operators.

Remark 1.19. For holomorphic theories, the range of {−,−} is

H∗
∂̄
(Cn \ 0)

H∗
∂̄
(Cn)

⊗Obscl0 ' H∗c (Cn,O)⊗Obscl0 ,

but in general there is not such a nice description.

Example 1.17. Consider a free scalar field theory on Rn. Field is ϕ ∈ C∞(Rn). Let O ∈ Obscl0 be the
observable

O : ϕ 7→ ϕ(0)

i.e. O = Oδ0 . Then we can compute that

{O,O}OPE = 1 ·G(x)

where G(x) ∈ Cω(Rn \ 0) is the Green’s function for the Laplacian, ∆G(x) = δx=0.

Proof: Consider Oδ0 · Oδx . By the defining property of the Green’s function we can rewrite the δ-function
at zero as

Oδ0 = ~dq(O?G).

Now,

~dq(O?GOδx) = Oδ0Oδx + ~
∫
Gδx

= Oδ0Oδx + ~G(x)

Therefore in cohomology,
Oδ0 · Oδx = −~G(x).
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Example 1.18 (1-dimension). In 1-dimension, the structure of {−,−}OPE is the ordinary Poisson bracket.
Take complex fermions ψi, ψ

i, action
∫
ψi∂xψ

i. Define

Oi(ψi, ψi) = ψi(0)

Oi(ψi, ψi) = ψi(0)

Then
{Oi,Oj}OPE = δij(δ|x|>0)

Key point:
∂

∂x
δ|x|>0 = δx=0.

δ|x|>0 is the Green’s function, same argument as before applies.

Example 1.19 (2d Chiral Theory). For 2d chiral theories, {−,−}OPE gives us a Poisson vertex algebra,

{−,−}OPE : Obscl0 ⊗Obscl0 → Obscl0 ⊗
(

Hol(C×)

Hol(C)
.

)
For complex fermions ∫

ψi∂̄ψi,

then because ∂̄ 1
z = δz=0, we have

{Oi,Oj} = δij
1

z
.

1.5.3 Interacting Theories

Consider the ϕ4 theory on R4. In general, for any theory, there is a formula for {−,−}OPE given entirely in
terms of classical data. If O1,O2 ∈ Obscl0 , then

{O1,O2}OPE =

– i.e. as a sum over trees of a particular form.

• In a given theory, only finitely many terms contribute.

• Answer is independent of L – changing L changes things by a quantity that is regular at x = 0.

In ϕ4 theory on R4, and with the operator

O : ϕ 7→ ϕ(0),

we can compute {O,O}OPE . We only need to consider the diagrams shown in Figure 6 – if there are more
than two vertices in the middle of the diagram the integral converges (so doesn’t contribute).
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Figure 6: Terms contributing to the classical OPE bracket {O,O}OPE .

(first diagram in Figure 6) =

∫ L

0

Kt(0, x)dt

=

∫
t−2e−‖x‖

2/tdt

= ‖x‖−2︸ ︷︷ ︸
Green’s function

+(terms continuous at x = 0)

(second diagram in Figure 6) =

∫
x′∈R4

∫ L

t1,t2=0

Kt1(0, x′)Kt2(x′, x)ϕ(x′)2

You can show that the second diagram is

log(‖x‖)ϕ(0)2 + (terms continuous at x = 0).

Sketch: Write

ϕ(x′) = ϕ(0) + ϕ1(x′)

ϕ1(x′) = 0 at x′ = 0

Expand ϕ(x′)2: terms involving ϕ1(x′) are more convergent, and so they don’t contribute. We are left with

ϕ(0)2

∫
t1,t2

∫
x′
Kt1(0, x′)K2(x′, x) = ϕ(0)2

∫
t1,t2

Kt1+t2(0, x) = ϕ(0)2 log ‖x‖+ (regular)

In sum:

{O,O}OPE =
1

‖x‖2
+O2 log ‖x‖ ∈ Obscl0 ⊗

(
Cω(R4 \ 0)

Cω+(R4)

)
Problem 5. Consider chiral complex fermions ψi, ψ

i. Then we have

{Oi,Oj} ∼ δji
1

z

(classical limit of chiral vertex algebra). If we have anti-chiral fermions, Ōi, Ōj,

{Ōi, Ōj} = δji
1

z̄
.
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If chiral + anti-chiral fermions are deformed by an interaction

ψiψ
jψ̄kψ̄

lM jl
ik,

then the one loop OPE14 is deformed by (Figure 7)

{ψi, ψj} = M jl
ikψ̄kψ̄

l z̄

z
log |z|.

Figure 7: A 1-loop correction to the OPE OiOj .

1.5.4 RG flow and scale invariance

In the ϕ4 theory, is there an R>0 on the fields that preserves all the structures?

Obscl0 = algebra with 4 commuting derivations, generated by O, subject to
∑

∂2
xiO +O3 = 0.

The R>0 should give O weight 1. But,

{O,O} =
1

‖x‖2︸ ︷︷ ︸
good!

+O2 log ‖x‖︸ ︷︷ ︸
bad!

since
log ‖x‖ → log ‖x‖+ log λ.

Upshot: We’ve sketched why the quantum factorization algebra cannot be a fixed point of the R>0 action.

(This is something we have shown before, but now we have done it purely by studying structures on factori-
sation algebras.)

1.6 Lecture 6 (Philsang Yoo)

Today’s topic: Noether’s Theorem (as formulated by Costello-Gwilliam).

14I.e. to first order in ~.
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1.6.1 Statement of Noether’s Theorem

Suppose that L is a symmetry of the space of fields E ;15 then there is a map

UBDn L → Obsq

where the left hand side is some twisted version of an enveloping algebra.

1.6.2 First: Classical, 0-dimensional, unshifted

I.e. Hamiltonian mechanics. Let (X,ω) be a symplectic manifold. Then a symmetry is a Lie algebra map

g→ Symp Vect(X).

Then Noether’s theorem asks if there is a corresponding map to observables g→ O(X), i.e. can we find a lift

(O(X), {−,−}) f

g Symp Vect(X) {f,−}

?

We have a class in H1(X) as an obstruction – there is however always a lift from a central extension

0 C ĝ g

0 C O(X) Symp Vect(X)

Recall the adjoint functors

Ass Pois

Lie Lie

forget forgetU Sym

So given a map g→ O(X) as a Lie algebra we obtain a map of Poisson algebras

Sym(g)→ O(X).

1.6.3 Now: Classical, 0-dimensional

I.e. classical field theory. So instead of X, we have

(E , ω) (-1)-shifted symplectic.

Now
g→ Symp Vect(E) = Ham Vect(E) = Ored(E)[−1];

replace O(X) by O(E). Because E is (-1)-shifted symplectic, (O(E)[−1], {−,−}) is a dgla, and Noether’s
theorem asks about a lift

(O(E)[−1], {−,−})

g Symp Vect(E)

15Something like: L∞-algebra acting on a shifted symplectic space.
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The adjunction we are now interested in is

P0

Lie

(−)[−1]Sym(−[−1])

and so such a lift gives us a map Sym(g[1])→ O(E). There is an obstruction α ∈ H1(g) corresponding to an
L∞-algebra central extension,

0→ Cc[−1]→ ĝ→ g→ 0

and so by applying the enveloping algebra adjunction construction we obtain a map16

Ug
α → O(E).

Concretely we can think of the enveloping algebra construction as

UP0
α (g) = UP0(ĝ)c=1.

1.6.4 Now again: Quantum, 0-dimensional

Goal: Given g→ Symp Vect(E) (or its quantisation), we want a quantisation of g→ O(E)[−1].

Recall: This corresponds to – given an action on fields, lift to an action on observables.

One thing we have learned is that
(O(E)[−1], Q+ {I,−})

is the deformation-obstruction complex for the theory E . Order-by-order in ~ we are trying to solve the
QME; there is an obstruction whose vanishing implies that such a lift is possible.

Recall:17

O(E) = O(BM) = C•(M)

where M = E [−1].18 Including the data of the action functional, we have

O(E) C•(M)

{S,−} dCE

and (C•(M), dCE) corresponds to an L∞-structure on M.

Recall from Exercise 4 of the first day:

• A map of L∞ algebras g1 → g2 is equivalent to,

• a map of cdgas C•(g2)→ C•(g1) is equivalent to

• a Maurer-Cartan element in C•red(g1)⊗ g2.19

So: the lifting question we are now asking about is

O(E)[−1] = C•(M)[−1]

g Symp Vect(E) = C•red(M)[−1]

16Corresponding to a map out of the central extension – a map out of g exists only if α = 0.
17Some of this recollection is from the week 1 exercises.
18BM is just notation, i.e. we define it by the property O(BM) = C•(M). Recall also that C•(g) = Ŝym(g∗[−1].
19Reduced cochains are the kernel of the augmentation map.
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There’s a lot going on here: consider the following diagram which defines the objects Inner Act and Act,

0 0

0 C•red(g)[−1] C•red(g)[−1]

0 Inner Act(g,M) C•red(g⊕M)[−1] C•red(M)[−1] 0

0 Act(g,M)
C•red(g⊕M)[−1]
C•red(g)[−1] C•red(M)[−1] 0

0 0

The left hand column is an extension with obstruction class living in H1(C•red(g)), and our lifting question
is about whether we can lift lifting an action to an inner action.20

Proposition 1.7. Let M be a classical field theory.

• An action of g on M is a MC element Sg ∈ Act(g,M); in particular it is Sg ∈ C•red(g⊕M) such that

(dg + dM)Sg +
1

2
[Sg, Sg] ∈ C•red(g),

or, Stot = S + Sg such that

dgS
tot +

1

2
[Stot, Stot] = 0

in Act(g,M).

• An inner action of g on M is a MC element Sg ∈ Inner Act(g,M).

• Given an action of g on M there is an obstruction class in H1(C•red(g)), and the action extends to an
inner action if and only if the obstruction class vanishes.

1.6.5 d-dimensional classical case

In the d-dimensional case, what happens?

• Symp Vect(E) remains Symp Vect(E) = Oloc,red(E)[−1]

• O(E) becomes Obs

So we are interested in the following problem:

Obs

g Symp Vect(E)

Note that in the d-dimensional case there is not a natural map Obs → Symp Vect(E), so the problem of
understanding how to lift a symmetry of fields to a symmetry of observables is somewhat subtle.

Now: we have to replace g with a local DG Lie algebra L, i.e. L is a sheaf of sections of a bundle together
with differential operators d, l2.21

20I’m almost certainly misunderstanding this.
21Satisfying various conditions, etc.
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Example 1.20 (G-bundles). Let Σ be a Riemann surface, g a Lie algebra. Then we take

LΣ : U 7→ Ω0,•(U)⊗ g, ∂̄, [−,−]).

Example 1.21 (Complex structure). If X is a complex manifold, set

Lhol(X) = (Ω0,•(X,TX), ∂̄, [−,−]).

Fact: There exists a bijection between k-shifted local central extensions of a local L∞-algebra L and
Hk+2(C•loc,red(L)).

Theorem 1.8 (Classical Noether Theorem). Suppose that L acts onM and suppose that α ∈ H1(C•loc,red(L))

is the obstruction to making it inner, defining a central extension L̂. Then there is a map UP0
α (L)→ Obscl.

1.6.6 Noether theorem

Upshot: A defomration of a theory arises from a symmetry in cohomological degree 1.

Example 1.22 (Free scalar field theory on M). Given

φ ∈ C∞(M) Ωd(M)[−1] 3 ψD

Introduce L = Ωd(M)[−1]. Then

Ωdc(U)[−1] Obscl(U)[−1]

α J(α)

where J(α) is the classical observable

J(α) : φ 7→
∫
φα.

Phil now presents the following statement: Global symmetry is local symmetry.

Given g a Lie algebra, can construct Ω•M ⊗ g. In some sense this is the same amount of information – the de
Rham complex is a resolution of the constant sheaf – and this is the sort of thing that Phil will mean by the
statement “global symmetry is local symmetry”.

Proposition 1.9. If M is in degrees 1,2, then the action factors through Ω≤1
M ⊗ g.

Proof. Act(Ω•M ⊗ g,M) = Oloc,red(Ω•M , g[1]⊕M[1])[−1]. Missed the rest of this argument :-(

Example 1.23 (Free scalar theory on a surface Σ). If

E =

(
Ω0,0 ⊗ Cn Ω1,1 ⊗ Cn[−1]∂∂̄

)
then there is an action of so(n) on E (“so(n) flavour symmetry”). So Ω• ⊗ so(n) acts on E and we can write
down an action functional on fields from O(B(M⊕ L)), i.e. from

0 1 2

L c ∈ Ω0 ⊗ so(n) A ∈ Ω1 ⊗ so(n) Ω2 ⊗ so(n)

M φ ∈ Ω0,0 ⊗ Cn ψ ∈ Ω1,1 ⊗ Cn

d d

as

SL(A, c, φ, ψ) =

∫
φicijψj +

1

2

∫
∂̄φiA

1,0
ij φj +

1

2

∫
A0,1
ij φ)j∂φi +

1

2

∫
A0,1
ij φjA

1,0
ik φk.
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Definitely didn’t understand what was precisely meant here – hoping that the exercises illuminate.

Results in the quantum setting: UP0
α → UBD.

Example 1.24. • Ω0,•
Σ ⊗ g yields a Kac-Moody vertex algebra.

• Ω0,•
Σ (Σ, TΣ) yields a Virasoro vertex algebra.

Example 1.25 (B. Williams). Ω0,•
Σ (Σ, TΣ) acts on the βγ system with V of dimension n. This yields a map

Virc=2n → Obsqβγ .

1.7 Lecture 7 (Kevin Costello)

Today’s topic: More on Noether’s Theorem.

1.7.1 Factorization Envelope

If

• g is a Lie algebra, we can produce

• Ug an associative algebra.

Similarly, if one consults Beilinson-Drinfeld, there is a similar statement that if

• g is a Lie? algebra/Vertex Lie algebra, we can construct

• U chg the “chiral envelope/vertex algebra envelope”, a vertex algebra.

What happens in the factorisation algebra world?

Suppose that L is a sheaf of dlgas on M .22 Then we can produce

Ufact(L)

a factorisation algebra. The encompasses Ug and U chg as special cases, and also higher Kac-Moody algebras
[Williams, Kapranov et al.].

Example 1.26. We take

L = Ω∗R ⊗ g sheaf on R,

L = Ω0,∗
C ⊗ g sheaf on C.

We’ll consider the factorization envelopes below.

Factorization envelope:
Ufact(L)(U) = C∗(Lc(U))

where C∗ are Lie algebra chains, and the c subscript denotes compactly supported sections.

Lemma 1.10. If L = Ω∗R ⊗ g then H∗(Ufact(L)) = Ug as an associative algebra.

22Technical assumption: L(U) = C∞(U,L) for L a graded vector bundle, and d, [−,−] are differential operators. Don’t worry
too much about this technical assumption
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Proof. C∗(Lc((a, b))) = Sym∗(Ω∗c(a, b) ⊗ g[1]). If X ∈ g let X0 = X ⊗ f(t)dt where f is a bump function
around 0, and set

Xε = X ⊗ f(t− ε)dt
which is supported around ε. Then [X,Y ] is the cohomology class of

X0 · Yε −X0 · Y−ε.

There exists a function g(t) such that g = 1 near 0 and

dg = f(t− ε)dt− f(t+ ε)dt.

Take

d(X0 · (Y ⊗ g)) = X0 · (Y ⊗ dg)︸ ︷︷ ︸
comes from de Rham differential

+ [X0, Y ⊗ g]︸ ︷︷ ︸
comes from Lie algebra chains differential

So [X,Y ] = cohomology class of X0Y ε−X0Y−ε which is equal to the second term. So

[X,Y ] = [X,Y ]f(t)g(t) = [X,Y ]0

so there’s a homomorphism. Checking that it is an isomorphism is an exercise.

For the second example we’ll allow ourselves the luxury of allowing distributions.

Lemma 1.11. For L = Ω0,∗
C ⊗ g, H∗(Ufact(L)) is a VOA which is a level 0 Kac-Moody algebra.

Proof. Note that for the disc D,
H∗∂̄,c(D)⊗ g ∼ z−1g[z−1][−1],

spanned by δ0 and its derivatives. Then

H∗(Ufact(L)(D)) = H∗(Sym∗(Ω0,∗
c (D)⊗ g[1]))

= Sym∗(z−1g[z−1])

= Vacuum module for Kac-Moody

If X ∈ g set X0 = X ⊗ δ0. We want to compute the cohomology class of X0 ·Yz0 . To compute this, note that

δ0 = ∂̄

(
1

z

)
,

so that

X ⊗ δ0 = ∂̄

(
X ⊗ 1

z

)
.

Since 1
z isn’t compactly supported, choose a function f which is 1 near 0 and vanishes far away from 0. Then

X ⊗ δ0 = ∂̄

(
X ⊗ f

z

)
+ (stuff supported away from 0)

So

(X ⊗ δ0) · (Y ⊗ δz0) = d

((
X ⊗ f

z

)
· (Y ⊗ δz0)

)
− [X,Y ]

f(z0)

z0

Terms of the form X ∂̄f
z Y δz0 vanish. But now taking z0 small, we can replace f(z0) by 1, and so

(Xδ0)(Y δz0) ∼ 1

z0
[X,Y ].
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1.7.2 Central Extensions

Suppose that L is a sheaf of dglas.

Definition 1.13. A 1-shifted cocycle is a cochain map

α : Lc × Lc → C · c[−1].

Example 1.27. If L = Ω0,∗
Σ ⊗ g, there’s a 1-shifted cocycle

α(l1, l2) =

∫
TrR l1∂l2.

Why is this shifted? It takes one thing in degree 0 and one thing in degree 1 and gives you a number – hence
the shift by 1.

Given such a cocycle we can form a central extension

0→ C · c[−1]→ L̂c → Lc → 0

and define the twisted factorization envelope by

U → C∗(L̂c(U))⊗C[c] Cc=1;

the central element in degree 0, and we specialize to c = 1.

Lemma 1.12. The twisted factorization envelope of Ω0,∗
Σ ⊗ g is the Kac-Moody at level given by the central

extension.

Remark 1.20. This lemma shouldn’t be surprising, since there’s a term of the form in Example 1.27 in the
definition of the Kac-Moody.

Remark 1.21. There is also a notion of central extension for non-compactly supported section.

Example 1.28. On Rn define a sheaf of dglas by

L =

 C∞Rn C∞Rn

0 1

∆


with [−,−] ≡ 0. Denote degree 0 elements by ϕ and degree 1 elements by ϕ?. Then L has a shifted by 1
central extension

α(ϕ,ϕ?) =

∫
ϕϕ?.

Lemma 1.13. The twisted factorization envelope of this is the quantum observables of the free scalar.

Proof. We have

Uα(L) = Sym∗


O?g Of

C∞c (U) C∞c (U)

−1 0

∆

 ,

and the central extension gives

d(O?gOf ) =

∫
fg.
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1.7.3 Noether’s Theorem

Theorem 1.14. If we have a sheaf L of dglas which acts on a QFT, then there exists a cocycle23 α, dependent
on ~, and a map of factorzation algebras

U∗(L)→ Obsq .

Upshot: Given a symmetry we have a collection of operators which we have more control over (since they
come explicitly from the twisted factorization envelope).

Example 1.29. If

L =


γ γ?

C∞Rn C∞Rn

0 1

∆


then L acts on a free scalar field theory24 by translation. If ϕ and ϕ? are the fields of the scalar field theory25,
then

ϕ→ ϕ+ γ

ϕ? → ϕ? + γ?

is an action. As, e.g.
H0(L(U)) = {γ,∆γ = 0},

if ϕ satisfies the EOM (∆ϕ = 0) then so does ϕ+ γ. Therefore there exists a cocycle α such that

Uαfact(L)→ Obsq;

the cocycle is of course
∫
γγ?.

Remark 1.22. This “explains” why free field theories have such a simple factorization algebra – they have
lots of symmetries.

Example 1.30. Consider topological quantum mechanics, fields pi, q
i, Lagrangian

∑∫
pidq

i. If 1 ≤ i ≤ n
then gln acts.

But there is something better we can say:

L = Ω∗R ⊗ gln acts.

To see this, use BV:

pi  Pi ∈ Ω∗(R)⊗ Rn

qi  Qi ∈ Ω∗(R)⊗ (Rn)∨

L acts on Ω∗(R)⊗ Rn/Ω∗(R)⊗ (Rn)∨ by the fundamental/antifundamental representations.

The way that Phil explained this is that the action is a functional that depends on l ∈ L[1] and P , Q. The
function is

S(Pi, l
j
i , Q

j) =

∫
PidQ

i +

∫
Pil

i
jQ

j .

This is
ω(P, l ·Q)

23In general this is some L∞ version of the cocycle we discussed above.
24I.e. acts on itself.
25Important to distinguish the fields of the theory from the symmetry generators, even though they come from “the same”

sheaf of dglas.
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where ω is an odd symplectic pairing and · denotes the action.

What does Noether’s theorem say in this case? We will have a map

Ufact(L)→ Obsq .

At the level of cohomology,26

Ufact(L) = Ugln

Obsq = Diff(Rn)

and the map is the obvious one.27

Fact: If l ∈ Lc(U) and S(P,Q, l) is the action then the map

Sym∗(Lc(U)[1]) ⊇ Lc(U)[1]→ Obsq(U)

is

l 7→
(
∂

∂l
S(P,Q, l)

)
l=0

.

Concretely: Take the term linear in L, and insert l ∈ Lc(U) into S(P,Q, l). If l = E)j ⊗ f(t)dt for
f ∈ C∞c ((a, b)), then the element of Obsq((a, b)) is∫

Pi(t)Q
j(t)f(t)dt.

This is the Noether charge.

At the level of cohomology, in Diff(Rn) this is piq
j . Up to some annoying stuff these give a homomorphism

U(gln)→ Diff(Rn).

Example 1.31 (β − γ system). Let R be a representation of g,

B ∈ Ω1,∗(C, R∗), Γ ∈ Ω0,∗(C, R),

and
L = Ω0,∗(C)⊗ g.

Evidently, L acts. The action S coupling B,Γ,L is

S(B,Γ, l) =

∫
B∂̄lΓ =

∫
B∂̄Γ +

∫
BlΓ.

The map
Uαfact(L)→ Obsq

is
X ∈ g, X ⊗ δz=0 7→ 〈B,X · Γ〉(0).

This is the usual Noether charge, Ja, a an index for a basis of g. There’s a central extension here – we won’t
go into this – and so there is a map

KMg → Obsq .

26In this case the cocycle is trivial – there is an argument using the fact that it should be gln-invariant.
27I.e. induced by the action of GLn on Rn.
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1.7.4 Recall: Classical bracket

Last time, we considered point observables Obscl0 , and we showed the existence of a bracket

{−,−} : Obscl0 ⊗Obscl0 → Obscl0 ⊗
(
Cω(Rn \ 0)

Cω+(Rn)

)
Example 1.32. In the β − γ system,

Oiβ : β 7→ β(0)

Oγ,i : γ 7→ γ(0)

and

{Oiβ ,Oγ,j} = δij
1

z
.

For Ufact(L) there is a similar limit. We take distributions l ∈ L0 supported at 0. These have a bracket

L0 ⊗ L0 → L0 ⊗
Cω(Rn \ 0)

Cω+(Rn)

defined in the same way

Example 1.33. Concretely, for Kac-Moody,

H∗( Ω
0,∗
0︸︷︷︸

supp at 0

⊗g) = z−1g[z−1]

spanned by X ⊗ δ0, X ⊗ δ′0, etc., and

{X ⊗ δ0, Y ⊗ δ0} = [X,Y ]
1

z
.

Example 1.34. For gln acting on the β − γ system, Oiβ , Oγ,j have a bracket like the gln Kac-Moody:

{OiβOγ,j ,OkβOγ , l} = OiβOγ,lδkj
1

z
.

1.7.5 Spending some time on Tudor’s questions

Tudor asks what happens in higher dimensions. We’re going to explore this a little.

Question 1. If a Lie algebra g acts on a theory, what do we do?

Answer 1.1. This is equivalent to Ω∗M ⊗ g acting. So we get a homomorphism

Uαfact(Ω
∗
M ⊗ g)→ Obsq .

But there’s something funny about this answer. If D ⊆ Rn is a disc, then H∗c (D) is in degree n. So,

H∗(Ufact(Ω
∗
Rn ⊗ g)(D)) = Sym∗(g[1− n]).

If n > 1, there are no degree 0 elements, except for the identity. In general, we build a local operator of
degree n− 1 from a symmetry.

Doesn’t this contradict what Noether said? No – because she wasn’t interested in local operators, she was
interested in something that you can integrate over a codimension one submanifold, and that’s a priori
something a bit different.
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But: If M = N × R with N compact and we take Ufact(Ω
∗
M ⊗ g)(N × (−ε, ε)), we get something like

Sym∗ (H∗c (N × (−ε, ε))[1]⊗ g) = Sym∗(H∗(N)⊗ g)

(cancellation of shifts). In fact we get
U(H∗(N)⊗ g).

This is good! In degree 0, this is Ug.

Fact: If we have a theory which is not a gauge theory, so that the observables are in degrees ≤ 0, then an
action of Ω∗Rn ⊗ g factors through Ω≤1

Rn ⊗ g. So in this situation, we can get a local Noether charge J .

One last point for the experts: For n = 1, we say that in degree zero we found the universal enveloping
algebra. You probably won’t be surprised to find out that for n > 1 one finds the En universal enveloping
algebra. So if you have a symmetry, you obtain a map to observables from an En factorisation algebra.
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2 Supersymmetric Quantum Mechanics and All That

2.1 Lecture 1 (Mathew Bullimore)

Good references with lots of examples:

• Mirror Symmetry, Hort et al, Ch 10

• Dirichlet branes and Mirror Symmetry, Aspinwall et al, Ch 3.1

Since these are so good, we’re going to try and cover some aspects that aren’t covered by these references.

2.1.1 Motivation

Want to study SQM, i.e. SUSY QFT in d = 1. So we’re working on M = R, coordinatised by a parameter τ .

This is useful for QFT in dimensions d > 1 – taking a theory on Rτ ×Md−1 and reducing certain questions
to a problem in SQM on the line Rτ .

Example 2.1 (d = 2). Boundary conditions in 2d SUSY QFT form a category. Given two boundary
conditions B1 and B2 meeting at a juncture, the space of BC changing local operators at the juncture gives
Hom(B1, B2).

Now, there is a state-operator map: can think of a theory on and interval I tiems R, with B∨1 on one boundary
and B2 on the other boundary. Under certain conditions, can argue that the size of the interval can be shrunk
to zero – the corresponding theory is a 1d QFT on the “squashed together” boundary, and so we can turn
some 2d questions into SQM questions in this way.

2.1.2 Quantum Mechanics

We have the following objects in a QM theory:

A. States: elements (rays) in a complex Hilbert space Ω, 〈−,−〉 : Ω× Ω→ C.

B. Operators: linear operators A : Ω→ Ω, which generate an associative algebra A.

Putting these together we can consider measurements:

• Measurable quantities are self-adjoint operators A.

• Possible outcomes of a measurement are Spec(A) ⊂ R (the spectrum – eigenvalues – are real due to
the self-adjoint assumption).

In particular we are interested in time evolution of a system:28

• Euclidean time τ .

• distinguished self-adjoint operator H (“Hamiltonian”)

28We will work in a Euclidean framework rather than Lorentzian. This won’t really play a role going forward in this lecture
series, but as the rest of the workshop will be Euclidean focused it seems reasonable to make this assumption now and avoid
confusion later.
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– Schrodinger picture: states evolve,

∂τψ = −H · ψ, ψ ∈ Ω

– Heisenberg picture: operators evolve,

∂τA = [H,A], A ∈ A

Definition 2.1. An operator A is conserved if [H,A] = 0.

In particular: we won’t be starting with a classical theory and then “quantizing” – the quantum theory is
fundamental, and so we just start there.

Example 2.2 (Particle on S1). The theory of a particle on a circle has:

Ω = L2(S1,C), 〈f, g〉 =

∫ 2π

0

f(θ)g(θ) dθ

There is a self-adjoint operator called the momentum operator,

p = −i ∂
∂θ
,

Spec(p) = Z.

φn(θ) =
1√
2π
einθ, n ∈ Z (eigenfunctions)

The Hamiltonian is

H =
p2

2
= −1

2

∂2

∂θ2
,

Spec(H) =

{
n2

2
, n ∈ Z

}
We have that [H, p] = 0, so p is conserved.

Example 2.3 (Riemannian σ-model). Start with X a compact smooth Riemannian manifold. If we were to
start with a classical theory, we would begin by writing down an action functional with input given by maps
from Rτ to X.

We won’t do that – the quantum theory is fundamental – so let’s just write down the data for the quantum
theory:

Ω = L2(X,C)

〈f, g〉 =

∫
X

f̄g dvolX

The algebra of operators A is the algebra of differential operators on X:

• Smooth functions f : X → C act by
Af : ψ 7→ fψ,

and this provides a commutative subalgebra of A (self-adjoint if f is a real valued function).

• Vector fields V act by

AV : ψ 7→ −iV [ψ] = −iV i ∂ψ
∂Xi

and if V is real then again this will be self adjoint.
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The Hamiltonian in this theory is H = ∆, the Laplacian on X; consequently the time evolution equation is
the heat equation on X:

∂τψ = −∆ψ

If V is a real vector field that generates an isometry of X, then

[H,AV ] = 0

and we have another conserved quantity (again interpretable as momentum).

2.1.3 Supersymmetric Quantum Mechanics

This is quantum mechanics with additional structure:

• The Hilbert space must be Z/2-graded,

Ω = Ωe ⊕ Ωo (even and odd parts).

• There exist odd operators Q and Q† which satisfy29

{Q,Q} = 0

{Q,Q†} = H

{Q†, Q†} = 0

Immediate consequence: [H,Q] = [H,Q†] = 0, so Q,Q† are conserved. In the physics literature such odd
conserved charges are called supercharges.

Also note: Whatever Q is, Q† is its adjoint. (As we required H to be self-adjoint.)

Remark 2.1. This is really N = 2 SQM – there are variants with more or fewer supercharges. We’ll focus on
N = 2 today.

This algebra has some outer automorphisms:

O(2) = U(1)⊗ Z/2

• The U(1) is the fermion number/R-charge:

Q Q† H

weights +1 −1 0

• The Z/2 is charge conjugation,
Q↔ Q†

This is a symmetry (of the theory) if it lifts to an action on the Hilbert space Ω. How can this lift?

For fermion number:

29Square brackets are commutators, curly brackets are anticommutators. I.e.

[A,B] = AB −BA
{A,B} = AB +BA
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• Require a self-adjoint operator F satisfying

[F,Q] = Q

[F,Q†] = −Q†

[F,H] = 0

i.e. F generates the R-symmetry action on Q,Q†, H.

• This promotes Ω to a Z-graded Hilbert space,

Ω =
⊕
j∈Z

Ωj ,

Ωj = {ψ ∈ Ω |Fψ = jψ}

• Note that the original Z/2-grading is recovered by considering the operator (−1)F ; so

Ωe/o =
⊕

j even/odd

Ωj .

• We can unwind the action of Q and Q† componentwise:

Ωj−1 Ωj

Q

Q†

Q

Q†

and the H operator acts preserving each graded component. Note: If we forget about Q† we have a
cochain complex.

For charge conjugation: Require a unitary operator

C : Ωj → Ω−j

satisfying

CQC−1 = Q†

CQ†C−1 = Q.

If we have both of these structures: The Ω is promoted to a representation of O(2).

Example 2.4 (Riemannian σ-model). Again we have X a compact smooth Riemannian manifold. Now
Ω = Ω∗(X,C), and the Z-grading is given by

Ωj = Ωj(X,C)

〈f, g〉 =

∫
X

f̄ ∧ ?g

The supercharges and Hamiltonian are

Q = d

Q† = d†

H = {Q,Q†} = {d, d†} = ∆

The O(2)-representation structure is given by:
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• The fermion number operator is naively

Fnaive =
∑
i

dxiι ∂

∂xi
= form degree

• Charge conjugation is given by the Hodge star

? : Ωj → Ωm−j

where m = dim(X).

• So in fact we need to shift our naive fermion number operator:

F =
1

2
{dxi, ι∂/∂xi} =

∑
i

dxiι∂/∂xi −
m

2

With these definitions (F, ?) give the O(2)-representation structure on Ω.

Remark 2.2. Q is independent of the metric on X.

Example 2.5 (Hermitian σ-model). Take as input

• X a compact hermitian manifold

• E a holomorphic vector bundle equipped with a hermitian metric

Define the graded Hilbert space by

Ωj = Ω0,j(X,E)

〈f, g〉 =

∫
X

f̄ ∧ ?g

Inplicit in the formula for 〈−,−〉 is a contraction involving the hermitian metric on E.

Now: take

Q = ∂̄E ,

Q† = ∂̄†E

and so

H = {∂̄E , ∂̄†E} =
1

2
∆∂̄E , (Dolbeault Laplacian)

The fermion number operator is

Fnaive =
∑
i

dz̄iι ∂

∂z̄i
= form degree

So far as MB can see, there is no charge conjugation (Z/2) operator in this theory.

Remark 2.3. Q is independent of the hermitian metrics on X and E.

2.1.4 Spectrum of the Hamiltonian

An important question in any quantum mechanical theory: What is the spectrum of the Hamiltonian?

In QM the spectrum must be real (self-adjointness of H). In SQM:

Spec(H) ⊆ R≥0

Why?
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Proof. Given an eigenfunction
H · ψ = Eψ,

and we can evaluate to find
〈ψ,Hψ〉 = E‖ψ‖2.

But now using the Q-operators,

〈ψ,Hψ〉 = 〈ψ, {Q,Q†}ψ〉 = ‖Qψ‖2 + ‖Q†ψ‖2 ≥ 0.

Hence E ≥ 0.

The states with lowest possible energy (E = 0) are important for out theory, and we give them a name.

Definition 2.2. The states which saturate this bound are called SUSY ground states.

Remark 2.4. In a non-SUSY theory we have to put in by hand the requirement that the spectrum of H is
bounded below (and then we can shift by a constant to make the lower bound 0). In a SUSY theory, we get
this for free.

Observe that
H := ker(H) = ker(Q) ∩ ker(Q†) ⊂ Ω.

Remark 2.5. Note thatH could be empty – in that situation we say that the system “breaks supersymmetry”.

Another assumption that is usually made in physics is tha the spectrum is gapped ; i.e. the non-zero energies
do not limit to zero (Figure 8).30

Figure 8: A theory with an energy gap has a finite difference between the zero energy and first excited modes.

Example 2.6. A discrete spectrum

Spec(H) = {0 = E0 < E1 < E2 < · · · }

is gapped.

We expect that there is an orthogonal decomposition

Ω = H⊕ im (Q)⊕ im (Q†)

This is “proved” in two steps:

30This assumption allows us to make the orthogonal decomposition argument below.
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1) (Hard) Ω = ker(H)⊕ im (H) (orthogonal decomposition)

2) (Easy) For ψ ∈ im (H),
ψ = Hω = {Q,Q†}ω = Q(Q†ω)︸ ︷︷ ︸

im (Q)

+Q†(Qω)︸ ︷︷ ︸
im (Q†)

Remark 2.6. If you don’t like the gapped assumption, just assume the existence of this decomposition instead.

Example 2.7 (Riemannian σ-model). We have

Hj = ker ∆|Ωj = Harmj(X,C)

Ω = H⊕ im (d)⊕ im (d†)

(Harmj is harmonic j-forms).

Example 2.8 (Hermitian σ-model). We have

Hj = Harm0,j
∆∂̄E

(X,C)

Ωj = Hj ⊕ im (∂̄E)⊕ im (∂̄†E)

2.1.5 Next time and questions (lecture 2)

• Remember that Q was independent of “metric” structures.

• So we’ll look at homological structures associated to the supercharge Q.

Question 2. Are Riemannian/Hermitian σ-models supposed to be quantisations of a classical theory?

Answer 2.1. Yes for Riemannian; yes for Hermitian but making that one precise is a little more subtle.
Note that the SUSY classical action would have many more fields than the non-SUSY classical action.

Question 3. How is this lecture related to the factorisation algebra lecture?

Answer 2.2. Can consider these examples as quantisations of classcial systems as per Philsang’s talk; be
careful – the homological structures that arise in these talks do not originate with the BV formalism

2.2 Lecture 2 (Mathew Bullimore)

2.2.1 Reminder

We have:

• Hilbert space Ω = Ωe ⊕ Ωo

• Operators A

• {Q,Q} = 0

• {Q,Q†} = H

• {Q†, Q†} = 0

Assume:

• fermion number symmetry F
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• orthogonal decomposition: Ω = ker(H)⊕ Im(Q)⊕ Im(Q†)

Today: Want to throw out some of this structure and see what happens – specifically, forget the Hilbert
space structure, remember only one of the supercharges, and try to understand the algebraic structures that
arise.

Notation: From now on we will discard the “curly bracket” notation for anticommutators and simply write

[A,B] = AB − (−1)F (A)F (B)BA.

2.2.2 Operators Revisited

Recall that there is a fermion number symmetry,31 generated by a self-adjoint operator F . So:

• A is Z-graded:

A =
⊕
j∈Z
Aj ,

Aj = {A ∈ A | [F,A] = jA}

• Q is degree 1:
[Q,−] : Aj → Aj+1

• Compatible with product:
[Q,AB] = [Q,A]B + (−1)F (A)A[Q,B].

Upshot: (A•, [Q,−]) is a DG-algebra.

2.2.3 States Revisited

We have:

• Ω is Z-graded:

Ω =
⊕
j∈Z

Ωi,

Ωi = {ψ ∈ Ω |Fψ = jψ}

• Q provides a differential:

· · · Ωi Ωi+1 · · ·Q

• Differentials are compatible:

Q(A · ψ) = [Q,A] · ψ + (−1)F (A)A(Qψ)

Upshot: (Ω•, Q) is a DG-module for (A•, [Q,−]).

Next we will be interested in studying what happens on the level of cohomology – this is of interest if one
wishes to understand e.g. SUSY ground states.

31Examples where fermion numnber symmetry is broken: harmonic oscillator; equivariant SQM.

56



2.2.4 Operators: cohomology of Q

A BPS operator is an operator A such that [Q,A] = 0.

Remark 2.7. Might more accurately wish to call this a 1
2 -BPS operator, since it commutes with half of the

supercharges.

A BPS operator A yields a class
[A] ∈ H•(A) =: O•

Transfer of structure: O• inherits an A∞-structure:

µn : O⊗n → O, degree 2− n

These operations must obey a collection of relations. Since O arises as the cohomology of A we has some
more information on the operations:

• µ1 = 0 (vanishing differential)

• µ2 is inherited from the product on A,

[A1] · [A2] = [A1A2]

• µn, n ≥ 3 may not be trivial! (Massey products.)

This is unique up to quasi-isomorphism – if one remembers the structure given by Q† one can uniquely fix a
representative.

Example 2.9 (Triple Massey product). Suppose we have 3 BPS operators A1, A2, A3,

[A1A2] = 0, [A2A3] = 0.

So

A1A2 = [Q,B12], A2A3 = [Q,B23].

Define
A123 = B12A3 − (−1)F (A1)A1B23.

Then [Q,A123] = 0, so A123 is also BPS.

Remark 2.8. The example above shows how the higher operations should arise. One must be careful however
– there were choices involved in constructing A123 (the B-operators), and different choices of B-operators
may lead to different cohomology classes. This problem is related to the idea fact that O was unique only
up to quasi-isomorphism.

Time Dependence: in Heisenberg picture

∂τA = [H,A] = [Q, [Q†, A]]

if A is BPS. So: [A] is independent of τ . Would like to integrate this equation: “descent”.

Finite version: Given A ∈ Aj , its descendent is

A(1) := [Q†, A]dτ.

This is an Aj−1-valued 1-form on Rτ . It has the property that

[Q,A(1)] = dτA.
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Hence,

A(τ2)−A(τ1) =

[
Q,

∫ τ2

τ1

A(1)(τ)

]
.

Research Idea: Use descent to construct higher products. What does this mean?

Take a product of BPS operators at different times

A1(τ1) · · ·An(τn)

and via descent, construct k-forms on one of the following “configuration spaces”

Confn(R) :=

 {x1 < · · · < xn}, or,
{x1 < · · · < xn}/R, or,
{x1 < · · · < xn}/R× R+,

where in the last definition the first R is translations and the second R+ is scalings.

Proposal: Construct µn by integrating (n− 2)-form descendants.

2.2.5 States: cohomology of Q

[H,Q] = 0, so we can decompose (Ω•, Q) into eigenspaces of H. Let’s assume for simplicity that the spectrum
of H is discrete

Spec(H) = {0 = E0 < E1 < · · · }.

So we get a decomposition:

...
...

...

Ωi(1) Ωi+1
(1) (E1)

Ωi(0) Ωi+1
(0) (E0)

Q

Q

The cohomology vanishes for n > 0: Given ψ ∈ Ω(n),

[Q,Q†]ψ = Enψ;

if moreover Qψ = 0, then

ψ = Q

(
Q†ψ

En

)
.

Claim: Hj(Ω•, Q) ' kerH|Ωj
(0)
' Hj , the SUSY ground states.

Example 2.10. For Riemannian X,

Hi = Harmi(X,C) ' Hi
dR(X,C).

Example 2.11. For Hermitian (X,E),

Hi = Harm0,i
∆∂̄E

(X,C) ' H0,i

∂̄
(X,E).
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Transfer of structure: H• inherits an A∞-module structure for O•:

νn : O⊗n ⊗H → H, degree 1− n

Due to the way we obtained this module, we know:

• ν0 = 0.

• ν1 is induced from the module action A× Ω→ Ω.

• There could be higher Massey product style operations.

Example 2.12. For Riemannian X, operators should be the cohomology of X×X with convolution product.
Would be interesting to see if there are higher Massey products.

2.2.6 Flavour Symmetry

To produce some interesting examples, let’s introduce the notion of a G-flavour symmetry : G is a compact
connected Lie group, and

• Ω is a unitary representation of G,

• the action commutes with Q, Q†, H.

The infinitesimal action is described by:

• Self-adjoint Ja ∈ A0, a = 1, . . . ,dim(G)

• [Ja, Jb] = if cabJc

• [Ja, Q] = [Ja, Q
†] = 0

This data means that g acts on (Ω•, Q) by cochain maps; i.e. (Ω•, Q) is a DG-module of g.

Example 2.13 (Riemannian X). X has an isometry generated by a real vector field V :

G = U(1), J = −iLV .

Example 2.14 (Hermitian (X,E)). X has an isometry generated by a real vector field that lifts to an
equivariant action on E preserving the hermitian metric.

2.2.7 Flavour Action on Cohomology

By our assumption that [Q, J ] = 0, J defines a cohomology class [J ] ∈ O0. There are two cases:

(1) [J ] = 0. Then J = [Q, I] for some I, and H• is a trivial module: J · ψ = [Q, I] · ψ = Q · (I · ψ), which is
trivial in cohomology.

(2) [J ] 6= 0. Then H• may be a non-trivial module.

Example 2.15 (Riemannian X). J = −iLV = −i{d, ιV } = {Q, I} for I = iιV . So we are in case (1), and
de Rham cohomology classes are not charged under this flavour symmetry.

Example 2.16 (Hermitian (X,E)). LV = {J, ιV 0,1}+LV 1,0 , and the second term places us in the situation
of case (2).
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Example 2.17. Let’s take a specific Hermitian (X,E): let

X = CP1, E = O(n), n ≥ 0.

This has an action of g = su(2) (by rotations of the sphere). Now

Hj = H0,j

∂̄
(CP1,O(n)).

Borel-Weil-Bott tells us that this is precisely the (n+ 1)-dimensional representation of su(2), and indeed this
is the module structure induced the rotation su(2)-action.

2.2.8 Homological G-action

Work with: Beem, Ben-Zvi, Dimofte, Neitzke; with the “prime-mover” of the project being Tudor.

Claim: In case (1), H• is an A∞-module for H•(G).

For concreteness, let’s focus on G = U(1). The idea is to perform descent on the group G.

• ψ ∈ Ωj , Qψ = 0

• Promote to an Ωj-valued function on G = U(1):

ψ(0) := eiθJψ

This now depends on an angle θ; hence it lives on U(1).

• Want to descend this operator: construct an Ωj−1-valued 1-form on G = U(1). Use that we are in case
(1), so that J = [Q, I], and define

ψ(1) := (Iψ(0))dθ.

This obeys a descent equation on U(1):

Qψ(1) = dU(1)ψ
(0)

• Since we now have a 1-form, we can integrate over 1-cycles in the group. Take γ ∈ C1(G) and define

γ · ψ :=

∫
γ

ψ(1).

Then

Q

∫
γ

ψ(1) =

∫
γ

dU(1)ψ
(0) =

∫
∂γ

ψ(0) = 0 if ∂γ = 0.

• So this descends to a map
H1(G)×Hj → Hj−1.

Of course, this action could be trivial. Let’s give an example where it is not:

Example 2.18 (Particle on a circle). X = S1 and G = U(1) acting by rotations. Coordinatise X and G by
the angles φ and θ respectively. To vector field on X generating the symmetry is V = ∂

∂φ . The SUSY ground
states are

Hi = Hi
dR(S1,C) =

{
C · 1, i = 0,
C · dθ, i = 1

So we at least have the potential for a non-trivial map

H1(G)×H1 → H0.
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Start with ψ = dφ. Then

ψ(0) = eiθJdφ

= eθLV dφ

= dφ

Then

ψ(1) = (I · ψ(0))dθ

= (ιV ψ
(0))dθ

= dθ

and so

γ · ψ =
1

2π

∫ 2π

0

dθ = 1,

which is non-vanishing.

Problem 6. X = S3 has a G = U(1)-action given by rotating the fibres of the Hopf fibration. Show that
there is a non-trivial A∞ operation

ν2(γ, γ, dvolS3) = 1.

2.3 Lecture 3: Superpotentials (Mathew Bullimore)

Idea: Superpotentials are “deformations” of SQM – indeed, they will be flat deformations that we will use
to simplify certain computations.

2.3.1 Deformations

We are going to deform our supercharge,

Q→ Q+ x, x ∈ A1.

We demand that the deformed supercharge still square to zero – in order for this to hold, x must obey the
Maurer-Cartan equation for A (c.f. Davide’s lectures):

[Q+ x,Q+ x] = 0, i.e.

[Q, x] +
1

2
[x, x] = 0.

There are two types of finite deformations:

(1) Complex parameter u ∈ U ,
∂ūQ(u) = 0.

• (Ω•, Q) will become a complex of holomorphic vector bundles on U .

• Passing to cohomology, H• will become a coherent sheaf on U .

Example 2.19. Hermitian (X,E) with Q = ∂̄E . Then we can deform the complex structure of E,

∂̄E → ∂̄E + ā

and the MC equation is
∂̄E ā+ ā ∧ ā = 0.
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Example 2.20 (E, J-type superpotentials). Hermitian (X,E); now promote E to a Z-graded bundle

E =
⊕
p∈Z

Ep

and define a new fermion number operator

F = form degree + p.

Deform
Q = ∂̄E + δ

where δ is a holomorphic differental on E of degree 1.32 Then H• is the hypercohomology of this complex.

(2) Real parameters λ ∈ Λ,
∂λQ(λ) = [Q(λ), h]

where h ∈ A0 is self-adjoint of degree zero.

• Q(λ) = Q0 + λ[Q0, h] + · · · ; satisfies MC equation.

• flat deformation

• H• = local system on Λ

As we deform the system, we must make sure that our theory remains gapped.

Example 2.21. If we deform SQM over R, we may need to take Λ = R \ {0} since at 0 the theory develops
new massless degrees of freedom. Then the sort of thing we might expect is

• A space of SUSY ground states H− on R<0.

• A potentially very different space of SUSY ground states H+ on R>0.

• Possibly: wall-crossing phenomena that we can describe as we pass over 0.

The two main models we will discuss in today’s lecture are:

Example 2.22 (Riemannian X). Given a Morse function h : X → R, deform

Q = e−λhdeλh = d+ λdh ∧ −

Example 2.23 (Hermitian (X,E)). Suppose that (X,E) has a U(1) flavour symmetry, and further assume
that

• X is Kähler

• U(1) has isolated fixed points

• h : X → R is the moment map for U(1)

Then we deform
Q = e−λh∂̄Ee

λh = ∂̄E + λ∂̄h ∧ −

Idea:

• Send λ→∞.

• Exploit flatness to get a useful description of H.
32Another way of saying this: we used the new grading to form a bicomplex with vertical differential given by δ (up to signs);

we then took the total complex of this bicomplex.
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2.3.2 Riemannian Model (Witten)

Choose a Morse function h. We obtain a potential

V ∼ 1

2
λ2‖dh‖2,

and as λ→∞ the system localises to the critical points of h.

Schematically: We have a critical point p ∈ X of a potential, and we want to scale the potential to make it
vey steep in a small neighbourhood of p.

Local model: Simple harmonic oscillator (SHO).

X ' R,

h(x) = h(0) +
λ

2
h′′(O)x2 + · · ·

h(0) +
ω

2
x2

So

Q =

(
d

dx
+ ωx

)
dx

Q† =

(
− d

dx
+ ωx

)
ι d
dx

Then H = ker(Q) ∩ kerQ†, and there is a single state:

Ψp =

{
e−

ωx2

2 , ω > 0,

e
ωx2

2 dx, ω < 0.

At a general critical point p:

• Morse index: np

• 1 state Ψp: np-form

So a first (perturbative) approximation to the space of SUSY ground states is

Hipert =
⊕

p :np=i

CΨp;

indeed, these are exactly the perturbative ground states.

But – there are nonperturbative effects as well: Instanton corrections.

Remark 2.9. One way that we can see that there must be nonperturbative effects is that our deformation is
supposed to be flat. A different choice of Morse function could lead to a very different critical point structure,
however – if we are to obtain the same end result, then, there must be some nonperturbative corrections we
need to take into account.

In this situation, the instanton corrections arise precisely from the gradient flow equations connecting two
critical points

dxi

dτ
= gij∂jh.
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This leads to a further differential on the complex of perturbative ground states. Contributions can only
come from critical points with Morse index differing by 1, and so the differential looks like

δΨp =
∑

p′ :np′=np+1

npp′Ψp′

where npp′ is a signed count of the number of gradient flow lines p→ p′.

Example 2.24 (Particle on S1). Take as Morse function the height function h. This has two critical points:
p at the bottom of the circle with np = 0 and p′ at the top of the circle with np′ = 1. So we obtain
perturbative ground states

• Ψp: 0-form

• Ψp′ : 1-form

The differential is δΨp = npp′Ψp′ ; in this case there are two gradient flow lines (up each side of the circle),
and the have cancelling contributions, so npp′ = 1− 1 = 0. Hence we have reproduced the cohomology of the
circle.

2.3.3 Hermitian Model (X,E)

We make the assumptions:

• X Kähler

• U(1) action on X with isolated fixed points

• h : X → R the moment map for U(1) on X

As λ → ∞ we localise to the critical points of h – these are precisely the fixed points of the U(1) action.
Already we are seeing hints of a localisation procedure.

Local model: Complex SHO.

• X = C

• U(1) action by rotations

• h = ω|z|2

Then

Q = (∂z̄ + ωz)dz̄

Q† = (−∂z + ωz̄)ι ∂
∂z̄

In the real case we had only a single ground state corresponding to a critical point. In the complex case, we
will have an entire Fock space of normalisable SUSY ground states:

Ψ(n)
p =

{
zne−ω|z|

2

, ω > 0, (F+)

z̄neω|z|
2

dz̄, ω < 0, (F−)
n ≥ 0.
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We obtain tensor products of copies of F± at critical points according to their Morse index:

Hjpert =
⊕

p :np=j

(
n−np⊗
a=1

F+

)(
np⊗
b=1

F−

)

Again there must be instanton corrections, arising from solutions to the equation

dzi

dτ
= gij̄∂j̄h.

Note that in this case the corrections must be more drastic – for instance if our manifold is compact it has
finite dimensional cohomology, while the space of perturbative ground states is always infinite dimensional.

In principle we could try and solve this equation, and analyse how the solutions correct the perturbative
answer. This is difficult however, so instead we are going to consider a more algebraic approach (reference:
Frenkel-Loseu-Nekrasov).

• Step 1: Conjugation.

Whenever we have a state, define an “in” and an “out” version as follows

Ψin := eλhΨ,

Ψout := e−λhΨ,

Õ := eλhOe−λh.

We have a pairing (induced from the pairing on our original Hilbert space)

〈−,−〉 : Ωout ⊗ Ωin → C

and as such we can restrict attention to just one type of state. Let us focus on the “in” states, and

simply write Ψ
(n)
p ≡ (Ψ

(n)
p )in.

• Step 2: λ→∞ strictly.

In the local model,

λ→∞ : Ψ(n)
p →

{
zn, ω → +∞,
(−1)n

n! ∂̄
(

1
zn+1

)
, ω → −∞.

Note that the ω → −∞ terms correspond to derivatives of δ-functions.

• Step 3: Compute instanton corrections!

Example 2.25 ((X = CP1, E = O)). Our U(1) action is rotation, our moment map h is the height funciton,
and we have critical points:

• p at the south pole, with np = 0; give local coordinate z

• p′ at the north pole, with np′ = 1: give local coordinate w

The perturbative states are

Ψ(n)
p = zn,

Ψ
(n)
p′ = ∂̄

1

wn+1
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for n ≥ 0. Now,

QΨ(n)
p = ∂̄(zn)

= ∂̄

(
1

wn

)
=

{
0, n = 0,

Ψ
(n−1)
p′ , n > 0.

So we are left with a single remaining 0-form state: Ψ
(0)
p . This agrees with the Dolbeault cohomology of CP1.

Example 2.26 ((X = CP1, E = O(m))). The difference between this and the previous example is that we
must include the transition function:

QΨ(n)
p = ∂̄(zn)

= wm∂̄
1

wn+1

=

{
0, n ≤ m,
Ψ

(n−m−1)
p′ , n > m.

The remaining states are
1, z, z2, . . . , zm,

which agrees with the Dolbeault cohomology H0,•(CP1,O(m)).

2.3.4 Grothendieck-Cousin Complex

In the CP1 example, flow “lines” run from the south pole p to the north pole p′. Really, however, we should
think of these flows as flows of CP1’s connecting fixed points. I.e. we have ascending manifolds

Xp = CP1 \ {p′}
Xp′ = {p′}

Note that Xp′ ⊂ Xp.

Then we can interpret the perturbative ground states as local cohomology:

H0
pert = C[z]

= H0(Xp, E)

= X0
Xp(E)

H1
pert = C[w,w−1]/C[w] = H1

Xp′
(E)

The differential that was described in the previous section is then precisely the Grothendieck-Cousin operator
on local cohomology

δ : H0
Xp(E)→ H1

Xp′
(E).

General picture:

• ascending manifolds Xp ' Cn−np : BB decomposition of X

• assume stratification:
Xp \Xp =

⋃
p′<p

Xp′
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• perturbative ground states

Hipert =
⊕

p :np=i

Hi
Xp(E)

• differential: Grothendieck-Cousin operators

2.3.5 Geometric Representation Theory

Recall the CP1 example. The SUSY ground states transform in a representation of the flavour symmetry –
for CP1 we have that g = su(2) is the flavour symmetry, and

Hj = H0,j(CP1;O(m)) = Vm

where Vn is the (n+ 1)-dimensional representation of su(2). We have:

• the instanton complex is
δ : H0

Xp(E)→ H1
Xp′

(E);

• H0
Xp

(E), H1
Xp′

(E) are Verma modules;

• so we’ve really just given BGG resolution of Vm.

General story: Due to Kempf.

• X = G/B

• h the moment map for U(1) ⊂ T ⊂ B

• critical points {w ∈W}

• Xp are Schubert cells

• choose E to be the line bundle labelled by highest dominant weight λ

• the instanton complex is BGG resolution of Vλ
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3 Boundary Conditions and Extended Defects

3.1 Lecture 1 (Davide Gaiotto)

3.1.1 QFT and Local Operators

Want to begin by giving a physical definition of a QFT.

Idea: a QFT is determined by a collection of correlation functions.

• Take a manifold X.

• Choose a collection of points {pi} ⊂ X.

• To each point there is a collection of observables Obsp.

• Then given Oi(pi) ∈ Obspi there should be a correlation function

〈O1(p1) · · · Om(pm)〉.

This gives a map
Obsp1

⊗ · · · ⊗Obspm → C

satisfying some axioms. Importantly – pi 6= pj .

• These should be compatible in a precise sense – given observables at a collection of points, should be
able to replace by a convergent series of operators at a single point lying within a common radius of
convergence (Figure 9). So there are OPE maps that replace m-point correlation functions with 1-point
functions:

OPE : 〈O1(p1) · · · Om(pm)〉 → 〈Õ(p)〉

I.e. a map OPE : Obsp1
⊗ · · · ⊗Obspm → Obsp.

33

• The algebraic structure that this gives rise to is a factorisation algebra.

Then we say that a QFT is this collection of observables and OPEs, subject to consistency conditions
involving some possible extra data. (E.g. there might be prescribed nontrivial global 1-point functions.)

Remark 3.1. Often interested in topological or holomorphic theories, where the OPEs are easier to get a
handle on.

Given an operator, we can consider displacing/translating it – this gives rise for each O ∈ Obs to a derivative
∂O ∈ Obs.

Remark 3.2. Want the space of local operators to vary continuously as we move around our manifold.

Remark 3.3. We haven’t yet described conditions on the manifold X. Usually we at least want a metric, to
describe when points are “near” or “far” from each other.

QFT on flat space.

We’re going to start by considering QFT on flat Rd; such theories can often then be transferred to other
classes of manifolds (as well as being interesting in their own right.)

Some extra assumptions we will make:

33Like a flat connection – but a slightly silly one; if you say it in words, it is something like, “the derivative of an operator is
an operator called ‘the derivative of the operator”’.

68



Figure 9: The OPE expresses a collection of operators at different points as a sum of operators at a single
point.

• The QFT is translation invariant. (I.e. the space of local operators is the same everywhere, identified
via translation.)

• The QFT is rotationally invariant. (We might not use this assumption?)

Problem 7 (Free scalar in 3d). Take the action

S =

∫
Φ(x)(−∆2 +m2)Φ(x)

where Φ : R3 → R. Some correlation functions are

〈Φ(x1) · · ·Φ(xn)〉 =

∫
DΦe−

i
~S[Φ]Φ(x1) · · ·Φ(xn).

So Φ ∈ Ops. Exercise is to determine what else must be in Ops in order to have a well defined
QFT.

The is a map between theories defined at different energies (scales),

RGΛ : T → TΛ

called RG-flow. The operation on spacetime is scaling by Λ, and for the correlation functions the requirement
is

〈O1(p1) · · · On(pn)〉TΛ
= 〈O1(Λp1) · · · On(Λpn)〉T .

Remark 3.4. You may have to redefine your fields under RG-flow.

So: solving RG-flow at arbitrarily high energies (small Λ) is essentially solving your theory.

Remark 3.5. By repeated Taylor expansions, you can determine the OPE of two operators at finite distance
apart by the UV OPE (i.e. move them closer together by a series of small “UV allowed” distances, then when
they are close enough take the UV OPE).

An assumption we like to make: that RG-flow makes sense as Λ → ∞. The theory we obtain in this limit
will be scale invariant (perhaps conformal).
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Remark 3.6. If you have enough computational power, you could obtain (in principle) a QFT as the continuum
limit of a discretised theory.

This is all that Davide wants to tell us about the definition of a QFT.

3.1.2 Defects and defect OPE

Now suppose that we have a manifold Md and a submanifold Lk ⊂ Md. Away from Lk we have the same
spaces Obsp as before, and can take bulk OPEs

Obsp1
⊗ · · · ⊗Obspm → Obsp

But now if you choose a point pD1 ∈ Lk we obtain a different space of defect operators ObsDpD1
(Figure 10),

and when we take OPEs we may only “push” points onto the defect (Figure 11), i.e. we have defect OPEs

Obsp1
⊗ · · · ⊗Obspm ⊗ObsDpD1

⊗ · · · ⊗ObsDpDn → ObsDpD

Remark 3.7. Mathematically this is something like a “factorisation module”.

Figure 10: Distinction between bulk and defect observables.

Figure 11: Local operators may be pushed onto the defect via OPE, but not vice-versa.

70



Of course if we choose a point as a defect, we are placing a factorisation module at a point. We declare the
following axiom:

“True QFT” Axiom: Obs is the only 0-dimensional factorisation Obs-module.

Remark 3.8.

Problem 8 (Free gauge field in 3d). A U(1) connection on R3,

S =
∑
i,j

∫
((dA)ij)

2,

F = dA. Then we need to also include monopole operators; defect operators important in gauge theory. (Is
the exercise to figure out what these must be?)

Perturbative defects.

These take the form of lower-dimensional QFTs embedded into the original theory

S =

∫
dxd L[Φ] +

∫
dxk LD[Φ|Lk ,ΦD]

where Φ : Rd →? and ΦD : Rk →?

Remark 3.9. Note that the defect theory involves bulk fields coupled to the boundary theory.

Remark 3.10. This intuition is useful, but dangerous. There is no way to take an arbitrary defect and write
it as a lower-dimensional QFT embedded in the original QFT. (This is related to the observation of Remark
3.9.)

Monoidal structure from RG-flow.

Suppose you take two flat defects D1 and D2, living over a flat base space (i.e. of the form Di×Rk ⊂ Rd−k×Rk
where Di is a linear subspace). Further suppose that the bulk theory is scale invariant.

Then applying RG∞ in the Rk directions, we may “fuse” these defects to obtain a new defect D1 ◦D2. This
gives a monoidal structure on the collection of such defects (Figure 12).

Figure 12: RG-flow inducing a monoidal structure on the category of lines.

Remark 3.11. This means, for instance, that even a topological field theory with no local operators can be
nontrivial (e.g. due to the presence of line operators).

Remark 3.12. There are other options also – one could have two defects that under RG-flow fuse to give two
defects meeting at a junction (Figure 13).

3.1.3 Line defects

If one wants to consider 1d defects, one option would be to couple a theory of quantum mechanics on a line
L to the fields in the bulk theory. Define the Hamiltonian of the quantum mechanical theory by choosing a
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Figure 13: More complicated fusion of lines resulting in a junction.

(finite dimensional) vector space V and a collection of Mi ∈ End(V ), and setting

HD(t) =
∑
i

MiOi|L(t;x1 = x2 = 0)

(we are taking our line to be L = {x1 = x2 = 0} ⊂ R3).

Example 3.1 (3d Free Scalar). Recall the action is

S =

∫
φ(−∆ +m2)φd3~x.

An easy way to modify the action is by taking

S =

∫
φ(−∆ +m2)φd3~x+ g1

∫ ∞
−∞

φ(x1, 0, 0)dx1;

this gives a free field theory with a free defect. Let’s calculate a defect 1-point function 〈φ(x)〉D. Can
represent this diagrammatically (Figure 14), with the result that34

(−∆ +m2)〈φ(x)〉D = g1δ(x2)δ(x3) = g1K0(|x|m)

(Exercise: check this).

Figure 14: Defect 1-point function.

34Note that without the defect, 〈φ(x)〉 = 0.
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Example 3.2 (σ-model). Fields are maps Φ : Rd → M ; a family of quantum mechanical theories on M is
a vector bundle V on M equipped with a “Hamiltonian” given by a connection on V . Then we obtain line
defects on Rd by pulling back this connection (the connection gives us a way to do parallel transport, and
hence integrate along a line).

Remark 3.13. One could argue that this is the way that one produces all line defects in a σ-model.

Example 3.3 (Free Gauge Field). Let A be a U(1) connection on Rd,

S =

∫ ∑
i,j

(Fij)
2 dd~x,

F = dA. This S is gauge invariant, i.e. invariant under shifts A→ A+ dλ.

The easiest way to create a line defect is then to pull back this connection to a line and then take

S =

∫ ∑
i,j

(Fij)
2 dd~x+ q

∫ ∞
−∞

Ax1
(x1, 0, . . . , 0)dx1︸ ︷︷ ︸

parallel transport of connection

.

For a scalar field the parameter g1 was continuous – if one is careful one finds that the parameter q must be
quantised. So we have a discrete set of choices we can make. By considering closed loops L, one finds that
these correspond to representations of our group R, as the defect term becomes

trR

(
P exp

∫
L
A

)
Problem 9. Consider a Wilson line in 4d U(1) gauge theory, and compute correlation functions perturba-
tively.

3.1.4 Boundaries

Given a codimension 1 defect L ⊂ M , that separates M into two disjoint regions, we can consider placing
different theories on either side of the defect (Figure 15 top). In particular, we can consider placing our
theory on a manifold with boundary – we then need to make some choices to determine how our theory ends
at this boundary (Figure 15 bottom).

Figure 15: Domain wall separating theories (top); boundary condition for a single theory (bottom).
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Example 3.4. In the free scalar field we have

(−∆ +m2)〈φ(x1)φ(x2)〉 = δ(x1 − x2);

we want to choose boundary conditions such that this operator is still invertible.

For classical boundary conditions we require:

• Elliptic boundary condition

• Local bounday condition

Example 3.5 (Scalar field BCs). Consider φ : R2 × R+ → R.

• Dirichlet BC: Set φ|R2×{0} = 0. Then

∂⊥φ|{0} ∈ ObsD

where ∂⊥ is the normal derivative.

• Neumann BC: Set ∂⊥φ|{0} = 0. Then

φ|{0} ∈ ObsD .

• Enriched Neumann BC: Require

∂⊥φ|{0} =
δL

δφ|{0}
.

This comes from the defect action∫
φ(−∆ +m2)φdd~x+

∫
L(φD, φ|{0}).

Characterising all possible BCs for the scalar field is a nontrivial problem!

Example 3.6 (U(1) Gauge Theory). Have a U(1)-connection A.

• Dirichlet BC: Set A|R2×{0} = 0 (or alternatively a fixed a0). Then

F⊥|{0} ∈ ObsD .

• Neumann BC: Set F⊥|{0} = 0.

• Enriched Neumann BC: Require

F⊥|{0} =
δL

δA|{0}
.

This comes from the defect action ∫
F 2 dd~x+

∫
L(φD, A|{0}).

Remark 3.14. If you have a theory with a G-symmetry (and presumably a 1-form field) but without gauge
symmetry, it is interesting to ask whether it might arise as a boundary condition for an honest G-gauge
theory one dimension higher.
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3.2 Lecture 2 (Davide Gaiotto)

Topic for today: 1d topological defects, mostly in the context of 2d (homological) topological QFT.

Typical physical theory: local operators live in (super) vector spaces.

Theory obtained by twisting: involves passing to Q-cohomology, and so naturally obtain DG vector spaces,
homological machinery.

How does a typical topological QFT arise? Start with a QFT with a mass gap, and study the theory at
extremely low energies. So:

Definition 3.1. A “physical” TFT is one where the operators satisfy ∂O ≡ 0.

Definition 3.2. A “homological” TFT is one where the operators satisfy

∂Oi = {Q, Õi}

for an operator satisfying {Q†, Q} = ∂.

The “physical” setup is fairly well understood mathematically and physically.

The “homological” setup is less well understood and richer structurally. Davide will lecture on this today –
perhaps the audience can explain it to him.35

3.2.1 Physical versus homological comparison

The physical TFT setup: since ∂O = 0 we obtain an actual algebra of local operators with an associative
composition law, and a category of line defects where Hom(L1, L2) = ObsL1

L2
.

The homological TFT setup: cannot just collide operators willy-nilly. Indeed, there can be divergences when
one brings operators together, requiring one to work at a finite cutoff distance. The operators may not even
be closed! Instead now one has to consider A∞-algebras (quasi-isomorphic to E1-algebras) of OPEs, and
instead of a category of line defects on obtains an A∞-category of line defects.

3.2.2 Deforming SUSY quantum mechanics

Recall the setup SUSY data for N = 2 SQM:

Q2 = 0, (Q†)2 = 0, {Q,Q†} = H (∂t).

To deform this, we can deform our supercharge: Q→ Q+ x. This will be square-zero if

Qx+ x2 = 0

i.e x solves the Maurer-Cartan equation for the dg-algebra A.

Remark 3.15. There is a corresponding deformation of Q† – we suppress this in what follows.

The Hamiltonian is deformed:
H → H + {Q†, x}

The action is deformed:

S → S +

∫ ∞
−∞

dt {Q†, x}(t).

35*audience laughs*
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The correlation functions are deformed:

〈O1O2 · · ·〉x = 〈O1(x1)O2(x2) · · · e
∫∞
−∞ dt{O†,x}(t)〉

Example 3.7. Consider first when there are no operator insertions:

〈1〉x = 〈e
∫∞
−∞ dt{O†,x}(t)〉

= 〈1 +

∫ ∞
−∞
{· · · }(t1)dt1 +

∫ ∞
−∞

∫ t1

−∞
{· · · }(t1){· · · }(t2)dt1dt2 · · ·〉

This expression is the path ordered exponential (it comes up a lot – it’s important). When is this expression
BRST-invariant?

δBRST 〈· · ·〉 = 〈0 +

∫ ∞
−∞

∂t1x(t1) +

∫∫
∂t1x(t1){· · · }(t2) +

∫∫
{· · · }(t1)∂t2x(t2) · · ·〉

= · · ·

One would have to consult the video of this talk for the rest of the calculation, together with an explanation.
The left hand side of the board is being kept pristine for important statements; the right hand side is being
used for annoying calculations – of which there will be plenty – and so is erased rather more frequently than
one might otherwise prefer.

3.2.3 A∞-algebra

We have a collection of operations
µn : A⊗n → A[2− n].

Observe that the shift allows us to write down a reasonable equation, the MC-equation

µ1(x) + µ2(x, x) + µ3(x, x, x) + · · · = 0 (3.1)

Remark 3.16. One might worry about convergence of the right hand side. We won’t for now, and Davide
comments that he doesn’t know the precise mathematical condition under which this makes sense.

We can construct deformations of an A∞-algebra from a solution of the MC-equation:

A(x) = A

µx1(−) = µ1(−) + µ2(−, x) + µ2(x,−) + µ3(−, x, x) + · · ·
µx2(−,−) = µ2(−,−) + µ3(x,−,−) + µ3(−, x,−) + µ3(−,−, x) + · · ·

and so on.

Slogan: MC-equation gives a perturbative description of the deformations of an A∞-algebra.

An A∞-morphism ϕ : A→ B is a collection of morphisms

ϕn : A⊗n → B[1− n],

and as one might expect there is a notion of A∞ quasi-isomorphim. From a solution to the MC-equations
for A and a quasi-isomorphism, xA, one can define a solution to the MC-equation for B:∑

n

ϕn(x⊗nA ) = xB

Would like a sharp version of the following statement: “The solution to the MC-equation xA is a topological
effective action for the theory.”
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Remark 3.17. Be careful! Quasi-isomorphism is not an “innocent” process from the physical point of view.
E.g. one can give the cohomology an A∞-structure (with trivial differential), and passing to cohomology is
then a quasi-isomorphism – but one may lose physical information in this passage.

One illustrative comment on this: we shouldn’t integrate away massless degrees of freedom. So if under
quasi-isomorphism one loses an operator of mass dimension, I dunno, 2034, we don’t worry too much about
that. But if we are studying a massless scalar field theory and under quasi-isomorphism we lose the scalar
field itself – that would be a problem!

Now: in actuality we shouldn’t allow operators to actually collide (divergences), and this needs to be taken
into account in renormalisation of the expression

〈P exp

∫ ∞
−∞
{Q†, x}(t)dt〉.

In fact in reality, operators aren’t attached to points – instead we assign a space of operators to an inteval

(a, b)→ Obs(a,b)

and we will have operations
EΓn(· · · ) : Obs⊗n(0,L) → Obs(0,L) .

How does this work?

• Take n (ordered) operators attached to the interval (0, L).

• Shrink the interval (0, L) and embed n disjoint copies of the shrunken interval into (0, L).

• Include the operators from the disjoint intervals into the original interval (factorisation structure).

Generally: given a chain Γn ∈ C∗(Confn),36, can consider

[Q,EΓn ] = E∂Γn

and

〈P exp

∫ ∞
−∞
{Q†, x}(t)dt〉 =

∑
n

EΓn(x, x, . . . , x)

for choices of Γn ∈ Cn(Confn). Then∑
n

QEΓn(· · · ) =
∑
n

EΓn(x, x, . . . , Qx, x . . . , x) +
∑
n

E∂Γn(x, x, . . . , x).

Idea: Picking the cycles is a renormalisation scheme – how do the sizes of the segments change as we move
along the line, etc. In general will keep the sizes of the segment of order L.

We need to actually find these chains Γn. Γ1 has no boundary – so there is no problem. Γ2 has boundary – so
we need a way to describe what happens when multiple segments come close together37 M2 ∈ C0(Conf2

[0,L])
giving a correction

∂Γn = Γn−1 ◦M2;

but then one has to take into account corrections coming from the boundary of the boundary – an operator
M3 ∈ C1(Conf3

[0,L]) which gives a further corrections:

∂Γn = Γn−1 ◦M2 + Γn−2 ◦M3 + · · ·

What are we trying to do?

36Configuration space of n-points.
37A configuration space of segments now, not of points!
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• Want to have a way to compose operators.

• But to do so need to actually decide where to place the operators.

• These choices need to be compatible with each other. E.g. the chain Γn has a boundary, and we want
to relate the boundary of Γn to the choices of previous chains Γn−k; we do this through a collection of
Mj , which are chains in the configuration spaces of j segments in [0, L], that allow us to write

∂Γn =
∑
k

Γn−k ◦Mk

and such that ∂2Γn = 0.

3.2.4 Example: W = φ3 A-twisted LG-model

The line operators in this theory from an A∞-category. Start with two lines L1 and L2:

• End(L1) = C (only the identity)

• End(L2) = C (only the identity)

• Hom(L2, L1) = 0

• Hom(L1, L2) = C

The differentials are all trivial, the identity composes as the identity. All of the µn operations are “as zero
as possible”.

We can take direct sums of line defects
L1, L2 → L1 ⊕ L2

and to give a local operator between the direct sums of two lines is precisely giving a matrix of operators(
O11 O12

O21 O22

)
: L1 ⊕ L2 → L1 ⊕ L2

We can also take shifts of line defects L → L[1], and the corresponding local operators will be the local
operators shifted in degree:

ObsL1,L2[1] = ObsL1,L2
[1].

Consider L̃ = L1 ⊕ L2[1]. Then

End(L̃) =

(
C C[1]

C

)
Now given x ∈ Hom(L1, L2)[1] ∈ End(L̃), we can construct the line defect L3 = [L̃, x].

Problem 10. Study properties of this line defect.

3.2.5 MC-elements in A-infinity categories

Given A and A∞-category, there is a universal deformation MC[A], a “bigger” A∞-category that controls
the deformations of the original A.

Question: Can take a line defect and decompose it into direct sums of smaller and smaller line defects.
Something like Karoubi completion?
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3.2.6 IR gapped theories

If you have a theory which is gapped in the IR, then the line defects will be generated by an exceptional
collection Li with End(Li) = C and Hom(Li, Lj) = 0 if i > j.

Example 3.8 (B-model on CP1). Has Hom(L1, L2) = C2.

Question: Is there an obstruction to constructing a theory with Hom(L1, L2) = C3?

3.2.7 IR gapped theories

Clarifications:

(1) This talk was entirely about homological topological 1-dimensional defects. So everything here was all
about what was happening on these defects.

(2) Did it actually matter that the bulk theory was homologically topological? Or did we really only need
homological topological invariance in the direction of the line defects we wish to study? Answer: Yep,
this setup would work as well.

3.3 Lecture 3 (Tudor Dimofte)

Plan: Take intuition from a free field theory with a Lagrangian, bootstrap up to more interesting structures.

Today: Mostly about quantum mechanics – maybe SUSY QM at the end – so that we can form a chain of
logic from fields and Lagrangians to algebraic structures.

Remark 3.18. One reason quantum mechanics is so important: computations in higher dimensional field
theories will often be reduced to statements in a quantum mechanical theory (potentially with an infinite
dimensional space of fields).

3.3.1 Bosonic Quantum Mechanics

A function x(t) describing a particle moving on a line corresponds to the following setup:

• 1d QFT with spacetime Rt and target Rx.

• Fields are

{x(t)} = C∞(Rt) = sections of Rx bundle

Remark 3.19. We work in Euclidean time – this won’t matter for 1d QFT, but will matter in higher dimen-
sions.

S =

∫
Rt
dt (∂tx)2, (free)

S =

∫
Rt
dt
(
ẋ2 + V (x)

)
, (potential)

Problem 11. Take everything Tudor says today and express it in the language from Phil and Kevin’s lectures.
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The equations of motion (EOM) are
δS = 0

Since someone should do this once during this workshop, let’s calculate this:

δS =

∫
Rt
dt (2∂txprt(δx) + V ′(x)δx)

(IBP) =

∫
Rt
dt (−2ẍ+ V ′(x))︸ ︷︷ ︸

δS
δx(t)

=0

δx

i.e. the EOM are

ẍ =
1

2
V ′(x)

Example 3.9. If V (x) = x2 then ẍ = x which is solved by (Figure 16)

x(t) = ce±t.

Note that these either decay to zero slowly or blow up to infinity quickly. This is because of our Euclidean

Figure 16: Quadratic potential with Euclidean and Lorentzian time solutions.

time convention – we have lost some intuition. If we restore Lorentzian time we find x(t) = ce±it.

3.3.2 Operator perspective

Consider correlation functions

〈O1O2 · · · On〉 =

∫
Fields

dµ e−
1
~SO1 · · · On
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where Oi ∈ C∞loc(Fields). Focus on functions on jets at a point (t),

O(t0) = [x(t0)p0 ẋ(t0)p1 ẍ(t0)p2 · · · ] ,

c.f. Kevin’s talk: these are of the form Of for f = δ(t− t0).

Simplify: Suffices to consider linear operators,

O = x O = ẋ O = ẍ

Can get arbitrary monomials from collisions (Figure 17). Furthermore can obtain commutation rules by

Figure 17: Schematic collision of local operators (left); colliding linear operators (right).

taking limits of differences (Figure 18):

lim
ε→0
〈· · · (x(t)ẋ(t+ ε)− x(t+ ε)ẋ(t)) · · ·〉 = 〈· · · (−~) · · ·〉

Figure 18: Calculating commutator of operators as a limit.

Also:

0 = 〈· · · δS

δx(t0)︸ ︷︷ ︸
(2ẍ−V ′(x))(t0)

· · ·〉

=

∫
dµ

(
−~ δ

δx(t0)

)[
e−

1
~S(· · · )

]
Upshot: Can eliminate ẍ with EOM, so only need to consider x, ẋ.
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3.3.3 Hilbert space

The Hilbert space H is a linear representation of the operator algebra. Physically, we obtain this as

• H: geometric quantization of phase space (P, ω)

• P = {solutions to EOM on [0, ε)}, a 0-shifted symplectic space.38

Example 3.10. In our example,
P = R2 = {x(0), ẋ(0)};

ω is indeuced by the action:

• consider S on [0, ε),

S =

∫ ε

0

(ẋ2 + V )dt

• first variation (restricted to EOM) produces boundary term at t = 0, which yields the Liouville 1-form
θ on p:

δS =

∫ ε

0

(2∂tx∂t(δx) + V ′(x)δx)

= −2ẋδx|0 + (· · · )|ε +

∫
EOM︸ ︷︷ ︸
=0

,

So

θ = −2ẋ(0)δ(x(0))

ω = δθ = −2δẋ(0) ∧ δx(0)

Remark 3.20. Can often shortcut the above procedure: in local Darboux coordinates on P ,

ω =
∑

Fields φ

δpφ ∧ δφ,

pφ =
∂L

∂φ̇

where S =
∫
dtL (integral of the Lagrangian).

What does it mean to geometrically quantise? We are taking

• H ' L2-sections of a C-line bundle L → P

• with c1(L) = ω,

• which are polarised (i.e. independent of half the coordinates).

For us: this is
L2(R) = {f(x)}

with

x : f(x) 7→ xf(x)

ẋ : f(x) 7→ ~∂xf(x)
38We take a finite length interval, as we may not know about long-time solutions to the relevant PDEs. This finite length

assumption is also what results in the unexpected 0-shifted symplectic space (where we might have expected a (-1)-shifted
symplectic space from Phil’s lectures).
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Remark 3.21. For those familiar with D-modules: if we think of phase space as the cotangent bundle to a
space B, we are considering differential operators on B.

Example 3.11. [ẋ, x] = ~. This is pictured in Figure 18.

The Hilbert space H is roughly39 functions on

{boundary conditions for path integral at t = 0}

Picture: suppose that t ∈ [0, 1]. Then we can intepret the following picture in the following ways:40

=
∫
{x(t)}, x(0)=x0, x(1)=x1

dµ e−
1
~SO1(t1)O2(t2)

= 〈O1(t1)O2(t2)〉x(0)=x0, x(1)=x1

(ALSO) = 〈〈δ(x− x1),O2(t2)O1(t1)δ(x− x0)〉〉H

This second expression doesn’t really make sense – we can have it make sense by treating the δ-functions as
half-densities and only ever integrating against two functions f and g:∫

dx0 f(x0)

∫
dx1 g(x1)

∫
{x(t)}, x(0)=x0, x(1)=x1

dµ e−
1
~SO1(t1)O2(t2)

=

∫∫
(· · · )〈O1(t1)O2(t2)〉x(0)=x0, x(1)=x1

(ALSO) = 〈〈g(x),O2(t2)O1(t1)f(x)〉〉H

To interpret O(t1)f(x), need time evolution.

In general:

H = L− ẋ∂L
∂ẋ

= −ẋ2 + V (x)

action on H; i.e.

H = −~2

(
∂

∂x

)2

+ V (x).

Then we make sense of the expression by using H to time-evolve:

〈〈g(x), e−
1
~ (1−t2)HO2e

− 1
~ (t2−t1)HO1e

− 1
~ t1Hf(x)〉〉H

where O1 and O2 act as if they were acting at t = 0.

3.3.4 State-operator correspondence

Idea is that in general: Ops ' H(on link of a point) (Figure 19).

39Up to some things that the physicists will know, and exactly in a topological theory.
40〈〈−,−〉〉H is the inner product on the Hilbert space.
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Figure 19: Local operators as states on the link of a point.

Sure: elements of H⊗H∗ are the linear maps H → H.

In the Hilbert space on
p+ t p− ' L2(R× R) = {k(x, x′)}

the product comes from convolution:

k : f(x) 7→
∫
dx′ k(x, x′)f(x′)

3.3.5 Fermionic Quantum Mechanics

Fermionic particles move on ΠR (parity shifted line). The fields are

ψ(t) : Rt → ΠR

which anticommute:

ψ(t)ψ(t′) = −ψ(t′)ψ(t)

(ψ(t))2 = 0

If we think of these as living in a spinor bundle, we’d like them to satisfy a Dirac-type equation. We could
do this for a single fermion, but we’re going to do this instead for two real fermions ψ1(t), ψ2(t). Then we
can write down the action

S =

∫
dtψ1∂tψ2

=

∫
dtψ2∂tψ1 (IBP)

Alternatively: we can take one complex fermion ψ : Rt → ΠC with complex conjugate field ψ̄. I.e. we have
fields

Fields = {ψ(t), ψ̄(t)}

equipped with an involution
† : (ψ, ψ̄)† = (ψ̄, ψ).

The action is

S =

∫
ψ̄∂tψdt
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with EOM
∂tψ = ∂tψ̄ = 0.

In Euclidean space we will have
(∂t)

† = −∂t
and a product of fermions transforms as

(ψηγ)† = γ̄η̄ψ̄.

Problem 12. Check that S† = S.

Local operators?

Again suffices to only consider linear monomials (see Figure 20 for the nontrivial commutator),

ψ, ψ̄, ψ̇, ˙̄ψ, . . .︸ ︷︷ ︸
=0 (EOM eliminate)

.

Figure 20: Fermion anticommutator.

Conjugates:

∂L

∂ψ̇
= ±ψ̄ ∂L

∂ ˙̄ψ
= ±ψ.

Phase space:

P = {ψ, ψ̄} at 0

ωP = δψ ∧ δψ̄
H = {f(ψ)} = C[ψ] = {aψ + b} = C2

This on aψ + b ∈ H as the column vector

(
a
b

)
. Then the operators ψ and ψ̄ are represented as

ψ : f 7→ ψf ↔
(

0 1
0 0

)
ψ̄ : f 7→ ~

∂

∂ψ
f ↔ ~

(
0 0
1 0

)
and the commutation relation is

[ψ, ψ̄] = ψψ̄ + ψ̄ψ = ~
(

1 0
0 1

)
Now the state-operator correspondence is as shown in Figure 21.
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Figure 21: State-operator correspondence for a complex fermion.

3.3.6 1-dimensional N = 2 SUSY

Will use the superspace formalism:
Rt × (ΠC)θ,θ̄.

There is a dagger involution
(t, θ, θ̄)† = (t, θ̄, θ).

A bosonic superfield is Φ ∈ C∞(R×ΠC) can be expanded as

Φ = A(t) + θα(t)− θ̄β(t) + θθ̄B(t)

where the coefficient functions are even (bosonic). We could also have considered fermionic superfields, i.e.
Φ ∈ ΠC∞(R×ΠC).

We have the following vector fields on superspace:

Q = ∂θ − θ̄∂t D = ∂θ + θ∂t

Q̄ = −∂θ̄ − θ̄∂t D̄ = −∂θ̄ − θ∂t
[Q, Q̄] = 2∂t [D, D̄] = −2∂t

[Q′s,D′s] = 0

These act on superfields, and so induce an action on components.

Remark 3.22. The Q, Q̄ generate the N = 2 SUSY algebra.

Define
(∂θ, ∂θ̄, ∂t)

† = (−∂θ̄,−∂θ,−∂t).

Then † extends to an involution of the algebra (it alread acts on fields), and preserves the relation

[Q, Q̄] = 2∂t.

Problem 13. Check this.

So: can get a representation of the 1d N = 2 SUSY algebra by restricting to the fixed points of †, i.e. to real
superfields.

What do real superfields look like? Let’s only consider the bosonic ones:

X(t, θ, θ̄) = x(t)︸︷︷︸
∈R

+θψ − θ̄ψ̄ + θθ̄ f(x)︸︷︷︸
∈R

.

This leads to the theory from Matt Bullimore’s lectures that resulted in de Rham cohomology.
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OR: restrict to Φ such that
D̄Φ = 0;

these are called chiral superfields. In components:

Φ = φ︸︷︷︸
∈C

+θχ+ θθ̄φ̇

The adjoint Φ† satisfies
DΦ† = 0,

called antichiral superfields.

Remark 3.23. To construct actions one requires both chiral and antichiral superfields.

There is also a fermionic version: fermi superfield Γ satisfying

D̄Γ = 0

Doing SUSY QM with these sorts of superfields yields the Hermitian models from Matt Bullimore’s lectures
(i.e. leads to Dolbeault cohomology).

3.4 Lecture 4 (Davide Gaiotto)

3.4.1 2d (N,N) SQFT

Recall the relevant SUSY algebra

{Qi+, Q
j
+} = δijP++

{Qi−, Q
j
−} = δijP−−

{Qi+, Q
j
−} = 0

where, e.g. P++ = ∂1 + i∂2.

If we are going to insert a defect at a particular point, then since translations arise as a result of the SUSY
algebra it must be the case that some amount of SUSY is broken in order to preserve the location of the
defect.

1
2 -BPS 1d defects preserve

Qi = Qi+ +Qi−,

So that we still have
{Qi, Qj} = δij∂1

i.e. translations in one of the directions. The resulting SUSY on the defect is N = N SQM:

• (2, 2) gives N = 2 SQM

• (4, 4) gives N = 4 SQM

• We can also preserve fewer supersymmetries: (4, 4) with 1
4 BPS defects lead to N = 2 SQM

If we are studying a theory T on a manifold with boundary, i.e. a half-space, then choosing 1
2 -BPS boundary

conditiosn and passing to Q-cohomology leads to a dg-category of 1
2 -BPS boundary conditions, B2(T ).
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Question: There is a dg-category of 1
4 -BPS boundary conditions in a (4, 4) theory, B2(T ); moreover, a

1
2 -BPS boundary conditions are in particular also 1

4 -BPS boundary conditions, so we have

B1/2(T ) ⊂ B2(T ).

How can we recognise which 1
4 -BPS boundary conditions are in fact 1

2 -BPS boundary conditions? Davide
doesn’t know how to give a mathematically precise answer to this question.

3.4.2 Scale invariance

Suppose we have a scale-invariant bulk (2, 2) SQFT – in particular this is a SCFT. Then there is a scaling
action on the 1

2 -BPS boundary conditions B2(T ), and we can try to understand subcategory of 1
2 -BPS scale

invariant boundary conditions BCFT2 (T ).

Remark 3.24. There are a lot of interesting operations that one can perform on the category of boundary
conditions. These operations generally don’t preserve supersymmetry or scale-invariance – understanding
the interplay between these operations and such conditions is interesting.

If we have two theories which are “dual” to eachother in some precise sense (e.g. some sort of equivalence of
categories), then certain subcollections should be dual to eachother. E.g. some class of boundary conditions
on the one side should correspond to some other class of boundary conditions in the dual theory.

Remark 3.25. Understanding boundary conditions which are preserved by some structure or operation leads
naturally to the notion of stability conditions. Do stable objects in one theory get mapped to stable objects
in the dual theory?41 Suspect so, but can’t prove it.

3.4.3 Theory on a strip

Given a 2d theory T and appropriate classes of left and right boundary conditions, we can now study the
theory on a strip R× [0, 1] (Figure 22).

By the state-operator correspondence we can (up to questions of rotation by −π) turn this into a question
about a 2d theory on the half-plane with two boundary conditions meeting at a junction (Figure 23).

3.4.4 Boundary conditions for B-model on X

Let’s start with Dirichlet BCs: we require that our fields satisfy

ϕ|∂ = p

for a choice of p ∈ X. Call this BC Dp.

Now, suppose that we consider the theory on a strip. On the LHS of the strip place any boundary condition
B.42 On the RHS of the strip place the boundary condition Dp. Then for every length scale L of the interval
factor of the strip, every boundary condition B and every point p ∈ X we obtain a theory of super quantum
mechanics, which we call SQMB [P,L] (Figure 24).

Different length scales will lead to quasi-isomorphic theories, so we will often ignore this. So we have a family
of theories parametrised by X. Moreover, one can show that

∂̄pQ = 0,

41For some compatible dual notions of stability conditions? Unclear of the precise setup here.
42We make no assumption on this boundary condition. Even for a free theory, we could take a strongly coupled boundary

condition
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Figure 22: Placing a theory on a strip of width L.

Figure 23: The state-operator map in 2d exchanges theories on a strip and on a half-plane.
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Figure 24: Family of SQM theories from Dirichlet BCs.

so we have holomorphic dependence on p ∈ X.

Upshot: We have a holomorphic family of SQM theories parametrized by X (and L).

Now, let’s move on the Neumann BCs: we require that our fields satisfy

ϕ|∂ free, ∂⊥ϕ|∂ = · · · ,

and also other conditions that we can derive by applying the technology of Dylan’s talk.

So we get a family of SQM theories parametrized holomophically by X, by taking

SNeuBulk + SSQM [p = ϕ|∂ ].

In fact this gives us a map in the opposite direction – given a theory of SQM containing a parameter depending
holomorphically on X, we can deform our boundary condition in the B-model according to the prescription
in the above equation.

Remark 3.26. We now have a pair of (roughly) inverse functors between “boundary conditions in the B-model
on X” and “families of SQM theories parametrised by X”, denote such theories as “X → SQM”.

3.4.5 The boundary condition/quasicoherent sheaf function

Consider N = n SQM: algebra {Qi, Qj} = δijH. Let HE be the space of states of energy H = E.

If E > 0, then the Qi acting on HE generate a Cliff(n) module.

On the other hand, if E = 0 then Qi|0〉 = 0. You don’t get the interesting extra structure that arises in the
E 6= 0 case.

Example 3.12. For N = 2, the non-zero energy states always appear in pairs, mapped to each other by
Q and Q†. As you deform your Hamiltonian, you don’t change the Q-cohomology provided that you don’t
allow non-zero energy states to devolve into zero-energy states.
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Let’s return to the B-model situation. Given a quantum mechanical theory, one can consider the projection
πE<ΛH to states below a given energy Λ (Figure 25).

Figure 25: Building a sheaf on X from energy-cutoff Hilbert spaces.

Considering the theory given by a point p ∈ X, we can perform such a cutoff – it won’t for instance, change
the SUSY ground states. Moreover, moving in a small neighbourhood U of the point p won’t move any states
over the cutoff E = Λ, so that Hilbert space may be used to describe all of the theories parametrized by
points in the set U .

Given two intersecting open sets U and V , either Λ(U) or Λ(V ) is larger – embed the Hilbert spaces in the
Hilbert space with the larger cutoff.

Continuing this procedure over the entire space X, one obtains a quasicoherent sheaf on X. So we have a
“functor”

B2(X)↔ QCoh(X)

To prove that this is really a functor one has to do more work, e.g. show how to compatibly map morphisms.
This will involve calculations of the following type: given the theory on the strip, we can consider local
operators on each of the boundaries; these induce operators in the corresponding SQM theory

Ops(B) Ops(Dp)

Ops(SQMB [p, L])

and there are compatibilities which must be satisfied, etc.

3.4.6 N = 4 SQM

Consider a matrix describing the supercharges,

QAȦ, A, Ȧ = 1, 2

concretely this should be the matrix (
Q3 + iQ4 Q1 + iQ2

−Q1 + iQ2 Q3 − iQ4

)
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Then the SUSY algebra is

{QAȦ, QBḂ} = εABεȦḂH

For a general deformation of N = 4 SQM described by x,

{QAȦ, xBḂ} = εABεȦḂδH + εABŴ (ȦḂ) + εȦḂW (AB).

But there are also two types of special deformation:

• Ŵ = 0, and

• W = 0.

E.g. suppose that we have

{QAȦ, xBḂ} = εȦḂ(εABδH +WAB);

then this is unchanged under linear combinations of deformation parameters43

xBḂ →
2∑

C=1

gBCx
CḂ = yBḂ

Explicitly write

y++̇ = ux++̇ + vx−+̇

y+−̇ = ux+−̇ + vx−−̇

y−+̇ = −v̄x++̇ + ūx−+̇

y−−̇ = −v̄x+−̇ + ūx−−̇

where the matrix g is

gBC =

(
u v
−v̄ ū

)
Upshot: Given a single real deformation of the SQM theory, we automatically get a family of further
deformations.

In particular, if we think of u, v as being complex coordinates on the space of deformations, then we obtain
a CP1 of complex structures on deformation space by taking

uζ = u− ζv̄
vζ = v + ζū

and there is a corresponding CP1 family of holomorphic deformations44

∂ūζQ
ζ+̇ = 0

∂v̄ζQ
ζ+̇ = 0

where
QζȦ = Q+Ȧ + ζQ−Ȧ.

Further upshot: The deformation space is hyperholomorphic.

43Not sure I have this statement quite correct.
44Holomorphic in a varying complex structure.
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Example 3.13 (N = 2 de Rham and N = 4 Hodge SQM). Studying maps R → M , H = forms on M ,
Q = d, Q† = d†.

Suppose further that M is Kähler. Then we obtain N = 4 Hodge SQM with

QAȦ =

(
∂ ∂̄†

∂̄ ∂†

)
How much of the structure we have been discussing can we see here?

We have a CP1 worth of supercharges given by

Qζ+̇ = ∂̄ + ζ∂.

So:

• At ζ = 0 we obtain Dolbeault cohomology. (∂̄)

• At ζ =∞ we obtain the conjugate to Dolbeault cohomology. (∂)

• At ζ = 1 we obtain de Rham cohomology. (∂ + ∂̄ = ddR)

• At generic ζ the cohomology is isomorphic to de Rham cohomology.

So we obtain a family over CP1 which is generically de Rham cohomology, degenerating to Dolbeault coho-
mology at the poles.

Example 3.14 (Tri-holomorphic Dolbeault SQM). Start with (X,E) a Kähler manifold equipped with a

holomorphic bundle E. Then we get an N = 2 thoery with Q = ∂̄E and Q† = ∂̄†E .

Now suppose that instead we have a hyperkähler X equipped with a hyperholomorphic bundle – a bundle
with connection A such that the curvature F ∈ Ω1,1 in all complex structures. Then one gets a family of
N = 4 SQM theories, with

∂̄ζA = Q++̇ + ζQ−+̇.

As a sub example: if X = C2, then one finds that “hyperholomorphic” is equivalent to being an instanton.

Problem 14. In the exercise session we will study a family SQMADHM parametrised by C2.

3.5 Lecture 5 (Tudor Dimofte)

Orientation: This week, Tudor, Davide and Si are all describing ways of deriving boundary conditions for
2d theories, with the goal of (hopefully) upgrading this to defects in higher dimensional theories later in the
week.

A story of the A-model and B-model: The B-model is nice and algebraic! Things can be written down, and
it’s all lovely...except for the fact that all of the interesting information winds up being hidden in fermions
and singularities, necessitating the use of shifted symplectic spaces and Lagrangians, etc. The A-model is
geometric, the boundary conditions really are just geometric Lagrangians – but almost nothing is exact.
Bummer.

We’ll consider A-model boundary conditions in today’s talk, and then in the exercises we’ll consider the
parallel story of B-model boundary conditions.
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3.5.1 1d N = 2 SUSY

Recall: [Q, Q̄] = 2∂t, acts on superspace Rt ×ΠCθ,θ̄ via left invariant vector fields

Q = ∂θ − θ̄∂t Q̄ = −∂θ̄ + θ∂t

There are also right invariant vector fields, D and D̄.

Today we will be interested in real superfields:

X = x(t) + θψ(t)− θ̄ψ̄(t) + θθ̄f(t),

X = X†

The action of Q and Q̄ on component fields is given by the following table:

x ψ ψ̄ f

Q ψ 0 ẋ− f ψ̇

Q̄ ψ̄ ẋ+ f 0 − ˙̄ψ

To derive this, act by Q on X and then read off the components.

Problem 15. Check that [Q, Q̄] = 2∂t on any component.

The basic action.

S =

∫
dtdθdθ̄

[
1

2
D̄XDX + h(X)

]
where h is a real superpotential, a smooth function h : Rx → R. In components this is

S =

∫
dt

1

2
ẋ2 − 1

2
f2 + fh′(x) + ψ̄ψ̇ + h′′(x)ψ̄ψ︸ ︷︷ ︸

mass term


The equations of motion are

ẍ = fh′′ + h′′′ψ̄ψ

ψ̇ = −h′′ψ
˙̄ψ = h′′ψ̄

f = h′(x)

Physicists would say that f is an “auxilliary field” (no derivatives of f appear in the EOM) and can be
“integrated out” of the theory.

In the language we have been considering this week:

• Local operators Ops: we work modulo the EOM, so can just set f = h′(x)

• Hilbert space: quantisation of phase space P , where P is the solutions to the EOM on [0, ε). P doesn’t
contain f(0) (since f is fixed in terms of x – no initial conditions needed or allowed).

• So we obtain an equivalent QFT by solvign the EOM for f .
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If we do so, then

−1

2
f2 + fh′(x) = +

1

2
h′(x)2

and the action becomes

S =

∫
dt

1

2
ẋ2 +

1

2
h′(x)2︸ ︷︷ ︸
V (x)

+ · · ·


Local operators.

We’ll restrict to polynomials, Opspolys: then we can generate local operators from x, ẋ, ψ, ψ̄. Let’s study the
commutators given by Figure 26. (From now on: ~ = 1.)

Figure 26: Commutators for a set of generating local operators.

Can we calculate H•Q(Opspolys)? When we take Q cohomology, we shouldn’t have to worry about precisely
where we insert the operators. We have

Q(x) = ψ, Q(ψ̄) = ẋ− h′(x),

Q(ψ) = 0, Q(ẋ) 6= 0,

but
Q(ẋ− h′) = 0.

So,
H•Q(Opspolys) = C〈1〉.

Remark 3.27. If we don’t restrict to Opspolys then we get a different answer – there are disorder operators
which can be constructed from terms such as exp(ẋ). This upset Tudor when he remembered it last night,
and we’re not talking about it today.

Hilbert space.

The phase space is P = {x(0), ẋ(0), ψ, ψ̄}, so45

H ' L2(Rx)⊗ C[ψ]

= {a(x) + b(x)ψ}
= Ω•(R)

45Choosing a polarisation by x(0) and ψ; different polarisations will result in different looking results.
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where in the last line we have identified ψ ↔ dx. The correspondence between local operators and operators
on Ω•(R) is

x↔ x·, ψ ↔ dx∧,

ẋ↔ − ∂

∂x
, ψ̄ ↔ ι ∂

∂x

How does Q act on H? Via Noether charge!

Q = (ẋ− h′(x))ψ

=

(
− ∂

∂x
− h′(x)

)
ψ

= −d− h′(x)dx∧
= −e−hdeh

on Ω•(R).

To try and demystify the Noether charge procedure, consider the relation that must hold from Figure 27, i.e.
that acting on H

Q(O) = [Q,O].

Figure 27: Relation between the vector field Q and the Noether charge local operator Q.

Remark 3.28. Can use this result to find Q.

Note that in the above equation: Q is a vector field and Q is the Noether charge operator.

Remark 3.29. C.f. higher dimensions: have an action of a symmetry Q on local operators (induced from the
action on fields). So given a local operator O at some point, we can ask what happens when we act on it by
Q, Q(O).

There is also a Noether current: a 1-form J satisfying the conservation equation d ? J = 0. From this we can
construct a surface operator Q =

∫
Σ
?J . Then the relation between Q and Q is given by placing the surface

operator Q on a small sphere surrounding the operator O (Figure 28) – in 1d we are in the special situation
where the link of a point is S0 (two points).

Back to SQM: If the target Z were compact, say Z = S1 (rather than Z = R), then h doesn’t matter for
computing Q-cohomology,

H•e−hdeh(Z) ' H•d (Z) = H•dR(Z).

Can generalize to an n-dimensional Riemannian target Z: locally, we have n superfields Xi and action

S =

∫
dtd2θ

[
1

2
gij(X)D̄XiDXj +

1

2
h(X)

]
.
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Figure 28: Relation between the vector field Q and the Noether current J in higher dimensions.

If the target is compact, one finds again that the superpotential doesn’t matter and

H•Q(H) = H•dR(Z).

On Z = R noncompact,
H•Q(H) ' H•(Morse-Witten complex).

What is the Morse-Witten complex?

• Vector space: C〈dh = 0〉 (generated by critical points of h).

• Differential: from gradient flows.

The Morse-Witten complex arises because we have a potential V (x) whose minima are precisely at the critical
points of h. We expect to have a ground state trapped at precisely each local minimum of V = h′(x)2 (Figure
29), and the instantons (gradient flow) arise because the Q-fixed points in the space of fields allow

ẋ = h′(x).

Example 3.15. If h = x2, H•Q(H) ' C (Figure 30).

Example 3.16. If h ∼ x3 + x then there are two critical points and an instanton correction between them
(Figure 31),

H•Q(H) ' C Cd ' 0

Both examples are consistent with H•Q(Ops) = C〈1〉.
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Figure 29: Local ground states generate the Morse-Witten complex.

Figure 30: Local ground state associated to h(x) = x2.
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Figure 31: Local ground states associated to h(x) = x3 together with an instanton correction.

3.5.2 A-twist of 2d N = (2, 2) theory

Recall: we are studying a 2d σ-model with Kähler target M. Have:

• Fields: Maps(V N=(2,2),M)

• Local complex coords Φi chiral multiplets i = 1, . . . ,dimCM; Φi†

• · · · – for details see Si’s first lecture

The SUSY algebra involves Q±, Q̄± satisfying

[Q+, Q̄+] = 2∂z, [Q−, Q̄−] = 2∂z̄.

There is a nilpotent supercharge
QA = Q+ + Q̄−, Q2

A = 0.

Now, what steps to we need to perform to analyse boundary conditions in the theory?

(1) For boundary conditions that preserve QA and a physical SUSY algebra along the boundary, need to
classify 1d SUSY subalgenbas of the 2d N = (2, 2) algebra containing QA.

I.e. where there exists differential operators generating translations parallel to the boundary, but not
perpendicular to it.

If we fix a boundary as in Figure 32, the only subalgebra is 1d N = 2 generated by QA, Q̄A = Q̄+Q−
(this involved a choice depending on the boundary orientation). Check: [QA, Q̄A] = 2∂t.
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Figure 32: Fixed boundary with boundary coordinate t and normal coordinate s.

(2) Which SQM?

Rewrite entire 2d theory as a 1d (QA, Q̄A) SQM with 1d target Maps(Rs, 2d target).

Main example: 2d target M = C,
Φ = φ︸︷︷︸

C

+ · · ·

via a linear transformation decomposes into two real superfields for (QA, Q̄A),

X = x+ θψx − θ̄ψ̄x + fx

Y = y + θψy − θ̄ψ̄y + fy

φ = x+ iy

Note that x, ψx etc. now depend on two parameters: x = x(s, t), ψx = ψx(s, t), etc. The action becomes

S2d =

∫
dtdθdθ̄

1

2

∫
Rs
ds(D̄XDX + D̄Y DY ) +

1

2

∫
Rs
dsX∂sY︸ ︷︷ ︸
h


Since an integral over 1d superspace can only produce t-derivatives, the s-derivatives are accounted for
by a potential h-term:

h =

∫
Rs
dsX∂sY = −

∫
Rs
dsY ∂sX.

Now:

• |dh|2 =
∫

((∂sx)2 + (∂sy)2)

• fx = ∂h
∂x = ∂sy

• fy = ∂h
∂y = −∂sx
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So we are mixing functional derivatives with normal46 derivatives.

For a general symplectic (M, ω) with Λ the Liouville 1-form (dΛ = ω) we have

h =

∫
Rs
x∗(Λ).

In e.g., M = C = T ∗R, Λ = xdy.

(3) The (classical) analysis of SUSY boundary conditions boils down to making sure that δh has no boundary
terms, i.e.

δh =

∫
(EOM) + (no terms on the boundary of space).

Any constraints should be imposed on entire superfields (to ensure they preserve supersymmetry)!

E.g. consider a half-space Rs≤0 × Rt with

h = −
∫
R≤0

dsY ∂sX

δh = −
∫
R≤0

ds(δY ∂sX + Y ∂sδX)

(IBP ) = −
∫
R≤0

ds(δY ∂sX − δX∂sY )− Y δX|s=0

Then

• ∂sX and ∂sY are the SUSY equations of motion.

• Still need to deal with the boundary term Y δX|s=0. We could impose this constraint by hand47 –
but instead we’re going to do something different (and per Tudor, preferable).

So, don’t impost boundary conditions by hand. Let δh = 0 do it for us. In our example above, this
becomes

Y |s=0 = 0,

and considering the component fields we find that

y|0 = 0︸ ︷︷ ︸
Dirichlet on y

fy|0 = ∂sx|0 = 0︸ ︷︷ ︸
Neumann on x

.

It will also give us a collection of consistent SUSY boundary conditions on the fermions, which we won’t
write down. Note that this cuts out (Figure 33)

{y = 0} ⊂ M, a Lagrangian in M.

More generally, we could add a boundary action,48

S2d =

∫
dtd2θ

[
(· · · )−

∫
dsY ∂sX + g(X)|s=0

]
with the variation

δ(h+ g(X)|s=0) = 0

implying that
−Y δX + g′(X)δX = 0

46In the sense of “orthogonal”.
47I.e. we could have constrained our space of fields that we integrate over to have specified behaviour at the boundary.
48So g(X) is a function supported only on the boundary.
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Figure 33: Boundary conditions cutting out the zero section Lagrangian.

i.e. Y = g′(X). Then the Lagrangian we produce is

L = Graph(dg) ⊂M.

Even more generally, we can introduce any 1d (dR) QM at s = 0 If we let Z denote the boundary
superfields, then the action becomes

S =

∫
dtd2θ

[
(kinetic)−

∫
R≤0

dsY ∂sX + g(X,Z)

]

Then classically,

L =

{
y =

∂g

∂x
,
∂g

∂z
= 0

}
E.g. if Z = R and g = XZ then the corresponding Lagrangian is the vertical line through 0 in M (i.e. a
cotangent fibre).

One quantum interpretations of this (Davide): the boundary supports SQM on Z with Morse function
g(X,Z), X a parameter (not dynamical), and one obtains

H•Q(Hbdy) is fibred over values of X.

So one obtains a constructible sheaf over {y = 0}. (Simple example: a local system on a Lagrangian in phase
space.)

What haven’t we done today: shown how to compute Homs. (Ran out of time.)

3.6 Lecture 6 (Davide Gaiotto)

Suppose that we want to construct a d-dimensional TFT, obtained by twisting a SUSY QFT by a supercharge
Q – we require at least d + 1 supercharges in the original theory, since we require supercharges Q1, . . . , Qd
satisfying

{Q,Qi} = Pi

for the Q-cohomology to give a topological theory.
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Now: suppose that we want a (d−1)-dimensional defect in our theory. It can preserve at most Q,Q1, . . . , Qd−1

– if it is going to preserve the maximal amount of supersymmetry (which turns out to be at best half the
supercharges), we find that we require 2d supercharges originally.

We can continue this process – considering defects within defects, etc. – until we consider line operators
preserving 2 supercharges Q and Q†. If this is possible, one can show that we require the original theory
contain 2d supercharges.

Now, if we want our original QFT to be physically reasonable (e.g. unitary) then we are allowed to consider
at most 16 supercharges. Thus, if we want to consider physically reasonable theories with supersymmetric
line defects, we are restricted to dimensions d ≤ 4. In this “best case” we have the following embeddings of
SUSY algebras:

4d N = 4 ⊃ 3d N = 4 ⊃ 2d N = (2, 2) ⊃ 1d N = 2

With that preamble – let’s dive into an interesting 4d theory.

3.6.1 4d N = 4 SYM

To write down the field content and symmetries of this theory we actually only need to know the gauge Lie
algebra. So, we will consider a more general situation than is often described:

• 4d N = 4 SYM

• With gauge Lie algebra g

• and some topological data.49

The field content is

Aµ ∈ Ω1 ⊗ g

λAα ∈ S+ ⊗ g⊗ V4

λα̇A ∈ S− ⊗ g⊗ V ∗4
ΦAB ∈ Ω0 ⊗ g⊗ ∧2V4

and we will identify ∧2V4 ' ∧2V ∗4 .

The symmetries of this theory are generated by

Pµ, QαA, Q̄Aα̇ , MA
B ∈ su(4)R (MA

A = 0).

The SUSY algebra is

{QαA, QβB} = 0 {Q̄, Q̄} = 0

{QαA, Q̄Bβ̇ } = δBAPαβ̇

and the supercharges act on fields schematically as

A,Φ λ F, ∂Φ.
Q

Q̄

Q

Q̄

Problem 16. Write down a reasonable action of Q, Q̄ for g = u(1).

49Which could be, e.g. a choice of gauge group – but could be something more interesting still!
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Once a gauge group is specified, the Lagrangian of the theory is unique determined. Schematically it is the
sum of terms for the gauge field

1

g2
YM

∫
Tr(FµνF

µν) θ

∫
F ∧ F︸ ︷︷ ︸

topological term

Remark 3.30. The topological term affects:

• The quantisation of the theory, but also

• the boundary conditions of the theory (even classically).

Once the gauge field terms are written down the rest of the Lagrangian is uniquely determined by supersym-
metry:

1

g2
YM

∫
Tr(FµνF

µν + λ 6 ∂λ+ (∂µΦ)2) + · · · ) + θ

∫
F ∧ F.

Example 3.17 (Abelian U(1) gauge theory in 4d.). Even in the non-supersymmetric situation, this has an
interesting electric-magnetic (EM) duality, F ↔ ?F . For the quantum theory it is not enough to simply make
this substitution – instead one introduces a Lagrange multiplier field and then integrates out the original
field:

1

g2

∫
|dA|2 →

∫
1

g2
|F |2 + dF +B → g2

∫
|dB|2

Thus at θ = 0 we find that one must in fact make the exchanges:

F ↔ ?F g2 → 1

g2

One can show that at θ 6= 0 you can still perform the above procedure. Form the complex parameter

τ =
θ

2π
+ i

1

g2
,

then EM duality exchanges

τ ↔ −1

τ
.

Since the θ parameter is periodic, the theory is also invariant under shifts τ → τ + 1, and so in the end we
obtain an SL(2,Z)-action

τ → aτ + b

cτ + d
.

For a nonabelian SUSY theory, there should also be such a duality, which moreover exchanges g↔ Lg.

There will also be a nontrivial phase multiplier for the supercharges under these dualities. This is due to the
different transformation properties of F and ?F (difference in spinor chirality?).

Problem 17. Check τ → − 1
τ .

Research Question: Find the mathematical data required to fully specify a 4d gauge theory. Should involve
at least a Lagrangian splitting of the weight lattice times the coweight lattice, but things will be more subtle
than that.
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3.6.2 3d reduction

Under the 3d ⊂ 4d SUSY embedding, R4 → R3 ⊕ R, both spinor representations are sent to the same 3d
spinor representation,

S+, S− → S.

In terms of this splitting the SUSY algebra becomes

{QαA, Q̄Bβ̇ } = δBA (εαβ̇P
(4) + P

(3)

αβ̇
)

To preserve 3d SUSY, need to pick an identification V4 ' V ∗4 ,

SU(4)R → SO(4)R;

we obtain an S1-family of possible supercharges:

Q3d
αA[ω] = e

iω
2 QαA + e

iω
2 Q̄Aα̇ .

Then we can consider 1
2 -BPS boundary conditions, which preserve QαA[ω].

Problem 18. Find 1
2 -BPS Dirichlet BCs Ai = 0, i = 1, 2, 3.

ω is fixed as a function of τ and the BCs.

Example 3.18. For Dirichlet, ω = 0, π.

Remark 3.31. You need to be careful that you don’t overconstrain your fields – e.g. can’t prescribe vanishing
of the scalar field and its normal derivative.

Starting with a family of BCs, we can apply EM-dualities to obtain new families of BCs. Denote

T : τ → τ + 1, S : τ → −1

τ

Example 3.19 (U(1)). T preserves Dirichlet BCs; but there is a (terminating) chain of BCs:

DIR NEU NEU (1,k) NEU (−k,1) · · ·S Tk S

There are more general boundary conditions NEU (p,q) for coprime p, q which set to zero some particular com-
bination of the field strength at the boundary and the dual field strength at the boundary, with combination
determined by τ, p, q.

For NEU (p,q) there two possible values for ω, ω±(τ, p, q). At θ = 0 one can show that the values of ω for
DIR and NEU are 0, π – things get more complicated at θ 6= 0.

3.6.3 Line operators

In 3d:

There is a dg-category of topological 1d-lines in the bulk – really there is a lot here, it means “all the ways
you can fill in a topological cylinder ”, i.e. the category that the 3d theory assigns to a circle. So, e.g. you
can take a 2d (2, 2) boundary condition B and you can map it to the object that B assigns to the circle to
find a map

(2, 2)−BC Z3d(S1)

B B(S1)
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Figure 34: Topological defects in 3d and 4d.
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There are also subcategories of e.g. 1
2 -BPS physical lines, possibly living on a defect.

In 4d:

Things are more interesting. E.g. there are Wilson lines (which measure holonomy), and the 1
2 -BPS Wilson

lines correspond to Repg.50 We don’t know what the 1
4 -BPS lines are; the 1

8 -BPS lines should be the entire
dg-category of “things that look like Wilson lines”.

Under S-duality, Wilson lines are sent to ’t Hooft lines.51 Again there is a dg-category of “things that look
like ’t Hooft lines”, which contain 1

2 -BPS lines,52 1
4 -BPS lines, etc.

S-duality should exchange Wilson lines and ’t Hooft lines (preserving 1
2 -BPS, 1

4 -BPS lines, etc.). Mathemat-
ically this should result in an equivalence of dg-categories

dg-category of Wilson lines ' dg-category of ’t Hooft lines

and this should be the derived Geometric Satake equivalence.

3.6.4 Junctions between topological lines

We now want to make all of these topological defects live “in the same theory”. To do this we will wind up
losing some of the purely topological dependence:

• A 3d bulk theory with 2d holomorphic surface defects and (topological?) line junctions.

• A 4d bulk theory with 3d topological defects supporting 2d holomorphic junctions (Figure 35).

Example 3.20 (3d N = 4). Justin introduced some of the ingredients we need to begin this procedure.
Consider the holomorphic twist coming from Q+

++. From this we can twist further

• Topological A-twist: Q+
++ + εQ−+−.

• Topological B-twist: Q+
++ + εQ−−+

Given the 3d holomorphic theory and a (2, 2) holomorphic boundary condition, we can twist further to obtain
a 3d topological theory with a 2d topological boundary condition.

But given the 3d holomorphic theory and a (0, 4) holomorphic boundary condition, we can’t twist to a 2d
topological boundary condition in the 3d TFT. Instead, we can deform the boundary condition to a different
2d (0, 4) holomorphic boundary condition.

The same story can be told in 4d with the GL-twist of N = 4 SYM; from this one can further apply the
machinery of S-duality. This is a very rick (developing) story.

3.6.5 3d Chern-Simons Theory

We’ve seen a nice axiomatic formulation of 3d Chern-Simons in this workshop, and it is also the first place
we found holomorphic boundary conditions for a topological theory – so let’s change gears and discuss this
theory.

50I.e. the 1
2

-BPS Wilson lines are capturing some underived information.
51C.f. monopole operators.
52Something like equivariant D-modules on the affine Grassmannian.
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Figure 35: 2d holomorphic junction between 3d defects.
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Naively there are not interesting local operators in this theory. But there are interesting line operators:
Wilson lines WR, labelled by a representation R of the gauge group and corresponding to an operator
insertion

P exp

∫
AIµdx

µ · σI .

Moreover, naively there are no interesting point defects living on a Wilson line – a perturbative argument
tells us that

(Pert) Hom(WR,WR′) = δRR′C.

Remark 3.32. But – this was too naive! Rather than in perturbation theory, let’s consider Chern-Simons at
finite coupling k. Then at a junction between WR and WR′ we are led to studying the quantisation of the
phase space of flat connections on a sphere with points marked by the representations R and R′ (should be
related to flags at these points).

Question from Ben G.: What was the mistake in the first calculation?

Answer: A local operator is anything you can do to field which is local. A field insertion is one such thing,
but “whatever you can do” is a rather unconstrained notion.

Okay, that’s great, but we aren’t going to use it. Let’s step back: consider 3d Chern-Simons with a 2d BC.
We can’t do things like

• “Set the field to zero on the boundary” or

• “let the field fluctuate freely on the boundary”.

These are not good boundary conditions (they do not correspond to Lagrangians, c.f. Dylan’s talks).

What can we do? Restrict to gauge transformations which limit to the identity at the boundary. Then we
can set

Az̄ = 0,

the z̄-part of A to vanish; then the flat connection condition implies ∂z̄Az = 0, so we are studying holomorphic
connections. We have discovered a collection of holomorphic boundary operators!

(Caveat lector: I’m not confident the following is correct.)

Example 3.21. In the abelian case,

Az(z)Az(0) ' 1

k

1

z2
,

and for 1
kAz = Jz we discover at the boundary the Kac-Moody vertex algebra at level k. (These are the

perturbative observables on the boundary.)

If we work nonperturbatively, we are led to geometric quantisation of phase space, and we obtain a rational
VOA as the (non-perturbative) observables on the boundary: the WZW VOA at level k.

Now: Suppose that we have a Wilson line in the bulk ending on the 2d boundary. This gives us a map

1d lines→ Obs∂ −Mod.

Moreover in the bulk there are extra operators between the lines – morally these correspond to new higher
operators in the boundary theory.

Example 3.22. A line that doesn’t have to end on the boundary is a line that can end on a bulk monopole.
Bringing this bulk monopole to the boundary yields a new unary operator for the theory.
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Universal Bulk Theories.

(C.f. Dylan’s talk.) Suppose we want to consider 3d Chern-Simons at generic level53 κ – we can ask if
there is a 4d TFT with this theory at the boundary, so that calculations in the 4d theory make sense of the
(nonperturbative) Chern-Simons theory.

Indeed there is – it turns out that the GL[κ]-twisted 4d N = 4 SYM TFT with Neumann boundary conditions
is such a theory.

We can also consider a 3d topological54 Dirichlet condition for this theory meeting the 3d Neumann BC at a
2d holomorphic junction (corresponding to the Kac-Moody theory). Interesting questions: what Kac-Moody
modules correspond to line defects living in 3d CS ending on the junction, etc.?

3.7 Lecture 7 (Tudor Dimofte)

Stretch Goal: Calculations in the A- and B-models; localisation to 1d theories.

More Important Goal: Discuss some conceptual issues that haven’t been covered yet this workshop.

3.7.1 Moduli space of vacua

For a classical field theory on Rd−1,1, a vacuum v is

v ∈ Fields(Rd−1 × [0, ε))

such that
dS(v) = 0

and the energy is minimised on v (Figure 36.

In classical field theory, the energy is defined to be

E =

∫
Rd−1

h

where h is the Hamiltonian density, i.e. the Noether current for time translation.

Example 3.23 (ϕ4 theory in 4d). Here

S =

∫
d4~x

[
∂tϕ

2 − |∂~xϕ|2 − V (ϕ)
]

where V (ϕ) = mϕ2 + λϕ4. The hamiltonian density is

h = (∂tϕ
2) + |∂~xϕ|2 + V (ϕ),

so the vacua are
Vacua = {constant ϕ, V (ϕ) = 0} = {ϕ ≡ 0} = pt .

In Lorentzian QFT we say the same thing but in a quantum way: vacua v are states

v ∈ Hilb(Rd−1)

such that E = H, the Hamiltonian, is minimized.

53Non-integral.
54Really homotopically topological – it has a mild dependence on a choice of complex structure at the boundary.
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Figure 36: Classical vacuum as germ of minimal energy solution on a spatial slab.
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In Euclidean QFT (the case relevant for topological QFT) on Rd all directions look the same, so we look
instead at the asymptotic boundary Sd−1

∞ . Then a (generalised) vacuum is a state

v ∈ Hilb(Sd−1
∞ )

such that correlation functions of local operators in this state are finite.

In terms of the path integral, v is an asymptotic boundary condition on the fields such that

〈O1(p1) · · · On(pn)〉v =

∫
fields approaching v

e−S(· · · )

is finite.

We get a pairing
OpsL×Mvac → C

where OpsL = Fact(BdL) are the local operators in a ball of radius L, BdL, given by

O · · ·O, v 7→ 〈O · · ·O〉v.

We expect (or define55) this pairing to be non-degenerate. Then

Mvac = lim
L→∞

Spec
(
Fact(BdL)

)
.

Problem 19. Make sense of this mathematically.

Remark 3.33. One idea: vacua are asymptotic boundary conditions – the idea of vacua being boundary
conditions is a good intuition given this caveat, and of course in the topological situation one can’t tell the
difference.

Suppose the theory is a cohomological TQFT, e.g. a twist of a SUSY theory,

Ops = Fact(Rd)
A = H•Q(Ops)

and A is commutative if d ≥ 2. Then the (affinisation of the space of) “topological vacua” is

Aff(Mvac) = Spec(A).

Incorporating line operators.

Line operators form a 1-category: suppose L ∈ Lines and let 1L denote the canonical “trivial line”. Suppose
that we have a line that ends at a point in space – this can be thought of as a homomorphism between the
trivial line and L (Figure 37).

We can see that Hom(1L,L) is a module for local operators thought of as endomorphisms of the trivial line,
A = End(1L), by sending any L to the vector space of local operators at its endpoint. This gives a functor

Lines→ A−Mod = End(1L)−Mod

which may not be faithful (some lines may not end!)

Expect: Lines = Sh(Mvac).
56

55In quantum theory, vacua are essentially defined such that they distinguish between different operators – if the vacua have the
same value on all local operators, we should consider them identical. (Q: Would it be possible to not distinguish local operators
but distinguish higher dimensional defects? Ans: You might want to do that – Tudor will consider this in the topological case
later in the talk.)

56More accurately: we’ve just noted that in fact this may not be an equivalence, and indeed it is usually not an equivalence.
But! The discussion above tells us that this should be our “zeroth order guess” for what the category of line operators looks like.
This is good for two reasons: we don’t need to just blindly flail around guessing what line operators might look like, and if you
do have a guess for what the full category of line operators looks like you should check that it has a part that looks something
like sheaves on the moduli of vacua.
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Figure 37: Endpoint of a line as a homomorphism from the trivial line.

Example 3.24 (B-model with target X). Some of the above subtleties appear already in this case:

Lines = Coh(X ×X)

Mvac = T ∗[1]X

A = PV(X)

Coh(T ∗[1]X)
KD' Coh( TX︸︷︷︸

even shift

)

Keep going to higher dimensional defects.

There is a 2-category of surface operators, Surf; which contains a canonical “trivial surface” S1. It is not too
hard to see that (Figure 38)

End(S1) = (Lines,⊗) = Sh(Mvac,⊗).

Given any other S, we obtain an action of Lines on Hom(S1, S) (Figure 39).

Example 3.25 (3d N = 4 σ-model to T ∗[2]X , X algebraic). Consider the B-twist (Rozansky-Witten (RW)
twist). C.f. Kapustin-Rozansky-Sawline. We’ll quote some results:

A = H•Q(Ops)

= H0,•(T ∗X )

= H•(T ∗,OT∗X )

Spec(A) = Aff(T ∗X )

Lines = (QCoh(T ∗[2]X ), ⊗̃)

Surf = Sh Cat(T ∗[2]X )→ Lines−Mod

The way you would compute this in physics is very similar to the way that Justin performed calculations
yesterday. To find Lines, we would compactify the theory on an S1 that links the line. This gives a 2d
B-model on the half-plane with target the (infinite dimensional) loop space L(T ∗[2]X ).

You might worry – “Oh no, this is gigantic!” But this is where the superpotential comes in. In fact we are
thinking of the target L(T ∗[2]X ) with superpotential W , and we localise on {dW = 0} = {constant loops}.
So we conclude Lines = QCoh(T ∗[2]X ).

Every time the subscript dR appeared in Justin’s talk, that physically had something to do with the appear-
ance of a superpotential which served to localise our theory on constant maps.

Remark 3.34. In the above example the category of lines had an altered tensor product ⊗̃. To say something
about where this came from: in a 3d TFT the category of lines should be a braided tensor category – or
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Figure 38: Lines as endomorphisms of trivial surface defect.

Figure 39: Actions of lines on surface defect with boundary.
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perhaps better, Lines in 3d is an E2-monoidal 1-category. Then the twisted tensor product ⊗̃ is induced
from this braided stucture, but it’s actually computed with the Atiyah bracket. This results in interesting
corrections to the usual tensor product.

In 3d (e.g.) boundary conditions are two dimensional “things” – but they are not in Surf. Why? (Figure 40)

• A surface operator S is a thing that connects a theory T to itself.

• A boundary condition B is a thing that connects a theory T to the trivial theory ∅.

Figure 40: Surface operator versus boundary condition.

Roughly: Bdy =
√

Surf. What does this mean?

Basic boundary conditions are labelled by Lagrangians in Mvac.

Example 3.26 (2d B-model). Mvac ' T ∗[1]X , then e.g. for Y ⊂ X , N∗[1]Y corresponds to OY in Coh(X ).
The passage N∗[1]Y to OY is like taking a square-root.

Example 3.27 (3d B-model). In the 3d B-model to T ∗[2]X , one boundary condition is BX supported on
X (thought of as Lagrangian in T ∗[2]X ). Then

End(BX ) = Coh(X ).

We can play the same “folding and compactifying” game Justin played yesterday with this canonical BC
(Figures 41 and 42) – the result will be the 2d B-model with target X (instead of T ∗X – Figure 43). Now
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Figure 41: Compactification on the link of a boundary line (“folding”).
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Figure 42: After folding this becomes an interval compactification.
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we can find a map (Figure 44)

Bdy→ Coh(X )−Mod = End(BX )−Mod.

Figure 43: After the interval compactification we find the 2d B-model.

3.7.2 Random remarks

A-twisted analogs: similar, but in computations must always keep loops/paths (i.e. don’t localise on
constant maps – c.f. B-twisted theory).

Example 3.28 (2d A-model to X ). See Figure 45 – after folding cannot collapse the length scale to zero.
I.e.

∂z̄(x+ iy) = 0

where z = t+ is. So, find A-twisted SQM with target

Maps([0, 1],X )

and

h =

∫ 1

0

x∂sy ds.

Then
Hilb = H•Q(MW complex)
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Figure 44: Map from boundary conditions to coherent sheaves in B-model.
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Figure 45: After “folding” in the A-model, cannot collapse the length scale of the interval to zero.

120



which has generators
{dh = 0} = L0 ∩ L1

and differential arising from instantons/gradient flows,

∂tx =
∂h

∂x
= ∂sy

∂ty = −∂sx

The instantons can be pictured as in Figure 46. So the differential on the MW complex comes from counting

Figure 46: Instantons in the A-model come from holomorphic discs.

holomorphic discs. This is hard.

Also: local operators come from

Hilb(S1) = Hilb of SQM with target LX and h =

∮
S1

ds x∂sy.

Example 3.29 (3d A-model to T ∗[2]X ). 57 What are the line operators? Should find 2d A-model
target = L(T ∗[2]X )
W =

∮
dsX∂sY

 ?' D −Mod(LX ).

This would agree with calculations of Justin and Phil.

Remark 3.35. Hoping to organise a part II of this workshop in June 2020, focusing on 3d N = 4 theories,
with connections to 4d and applications.

57This is way more interesting for gauge theories.
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4 Supersymmetric Field Theory and Topological Twists

4.1 Lecture 1 (Si Li)

4.1.1 Topological QFTs

There are different types of topological QFT:

• Schwarz type.

– No manifest dependence on the metric.

– E.g. Chern-Simons theory.

• Witten type.

– Variations of the metric are Q-exact..

– Often arise as topological twists of supersymmetric theories.

– E.g. twists of 4d N = 4 supersymmetric Yang-Mills.

We’ll be focusing on the “Witten type” theories. In these theories we have

• Operator Q, Q2 = 0

• Observables/states arise as Q-cohomology

• If the original theory is supersymmetric, can find an operator Gµ such that

[Q,Gµ] = ∂µ.

I.e. small translations are Q-exact.

• Let G = dxµGµ; then [Q,G] = d (de Rham differential).

• Implies that if you conjugate by the symmetry generated by G you obtain

eGQe−G = Q+ d; (4.1)

this relation will be very important.

• For O(x) a local operator such that
QO = 0,

we have
eGO = O +O(1) +O(2) + · · ·+O(k) + · · ·

where O(k) is a k-form. Then

(Q+ d)eGO = 0 ⇒ Q

∫
γ

eGO = 0

and so we can construct interesting topological descendant operators.
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4.1.2 Super Lie algebra

Definition 4.1 (Super Lie algebra). A super Lie algebra is a Z/2-graded vector space

g = g0︸︷︷︸
(even)⊕ g1︸︷︷︸

(odd)

together with a super Lie bracket [−,−] satisfying:

(1) [−,−] is even:

[g0, g0] ⊂ g0, [g0, g1] ⊂ g1, [g1, g1] ⊂ g0.

(2) Graded skew-symmetry:
[x, y] = −(−1)|x||y|[y, x], |x| = i if x ∈ gi.

(3) Graded Jacobi identity:
[[x, y], z] = [x, [y, z]]− (−1)|x||y|[y, [x, z]].

Example 4.1. Let V = V0 ⊕ V1 be a Z/2-graded vector space. Then we have a super Lie algebra

End(V ) = End(V )0 ⊕ End(V )1,

where

End(V )0 = Hom(g0, g0)⊕Hom(g1, g1),

(
∗ 0
0 ∗

)
,

End(V )1 =

(
0 ∗
∗ 0

)

In this talk we will always assume that the commutator of endomorphisms is graded:

[x, y] := x ◦ y − (−1)|x||y|y ◦ x.

Definition 4.2 (Super Hilbert space). A super Hilbert space H is a super C-vector space

H = H0 ⊕H1

together with a Hermitian inner product such that H0 and H1 are orthogonal.

Let α : H → H be a bounded linear operator, and denote by α∗ the usual adjoint operator. We define the
super adjoint

α† : H → H

by

α† :=

{
α∗, if α is even,
−
√
−1α∗, if α is odd.

α is called super Hermitian if
α = α†.

Properties:

• (α†)† = α
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• (αβ)† = (−1)|α||β|β†α† (obeys Koszul sign rule – this comes from our choice of prefactor for the super
adjoint of an odd linear operator)

• [α, β]† = (−1)|α||β|[β†, α†] = −[α†, β†]

For an odd operator Q,
[Q,Q] = 2Q2

may not be zero; there is a useful positivity condition:

√
−1(QQ† +Q†Q) = (QQ∗ +Q∗Q) ≥ 0.

Define the (infinitesimal) unitary linear operators as

u(H) = {α ∈ End(H) |α† = −α};

the equations above tell us that this is a super Lie subalgebra of End(H).

Definition 4.3 (Unitary representation). A unitary representation of a super Lie algebra g on H is a super
Lie algebra morphism

g→ u(H).

4.1.3 Super Poincaré algebra

Let V be a d-dimensional R-vector space equipped with a quadratic form. In practice we will consider two
situations:

• Minkowski: Rd−1,1, diag(−1,+1, · · · ,+1).

• Euclidean: Rd, diag(+1, · · · ,+1).

Given such a space we can consider the special orthogonal and spin groups SO(V ) and Spin(V )

Let S be a R-representation of Spin(V ), together with a Spin(V )-equivariant symmetric pairing

Γ : S ⊗ S → V.

Then we can define a super Lie algebra from this data as follows.

Define a super Lie algebra
V︸︷︷︸

(even)

⊕ S︸︷︷︸
(odd)

via the bracket
[v1 ⊕ s1, v2 ⊕ s2] = −2Γ(s1, s2).

I.e.

[V, V ] = 0, [V, S] = 0, Γ : [S, S]→ V.

This generates a super Lie group
V ×ΠS,

where Π is the parity changing operator (so ΠS is odd) with a Spin(V ) equivariant group law

(v1, s1) · (v2, s2) = (v1 + v2 +
1

2
[s1, s2], s1 + s2).
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Remark 4.1. This group law will be important – for instance it will generate interesting differential operators.

Definition 4.4 (Super Poincaré Group and Algebra). The super Poincaré group is

PoinS(V ) = (V ×ΠS) o Spin(V ),

with corresponding super Poincaré algebra

poinS(V ) = (V ⊕ΠS)⊕ so(V ).

We will also simply call this the SUSY algebra.

Remark 4.2. The decomposition of the symmetric square of S looks something like

Sym2(S) = V ⊕ Rm ⊕
⊕
i

∧piV,

and including these terms in our algebra yields:

(1) V : this is the usual poinS(V )

(2) Rm: central charges

(3) ∧piV : central extension by forms (can be coupled to extend objects)

(4) Outer automorphisms: yields the “R-symmetry” group GR

4.1.4 Superspace

Let’s denote
VS := V ×ΠS,

with functions
O(VS) = C∞(V )⊗ ∧•(S∨).

Choose linear coordinates xµ, θα,

xµxν = xνxµ, θαθβ = −θβθα.

Then a function on superspace can be expanded as

f(x, θ) =
∑
I

fI(x)θI , θI = θi1 · · · θik , I = {i1 < · · · < ik}.

To think about vector fields on superspace, consider the space of super derivations:

Der(VS) := {D ∈ End(VS) |D(f · g) = D(f) · g + (−1)|D||f |f ·Dg}

which is generated by

∂xµ =
∂

∂xµ
, ∂θα =

∂

∂θ∗

where
∂θα∂θβ = −∂θβ∂θα .

The action of the super group VS on itself yields

• right invariant vector fields, and

• left invariant vector fields.
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Problem 20. Right invariant vector fields are generated by

{∂xµ , Dα = ∂θα + Γµαβθ
β∂xµ}

and left invariant vector fields are generated by

{∂xµ , Qα = ∂θα − Γµαβθ
β∂xµ}

satisfying

[Qα, Qβ ] = −2Γαβµ∂xµ ,

[Dα, Dβ ] = 2Γαβµ∂xµ .

So O(VS) forms a SUSY (translation) algebra representation via the operators {Qα, ∂xµ}.

4.1.5 SUSY in different dimensions

SUSY in Rd−1,1:

d 1 2 3 4 5 6 7 8 10
irred.R-rep R R± R2 C2 H2 H2

± H4 C8 R16
±

dimR 1 1 2 4 8 8 16 16 16

• If d 6≡ 2, 6 mod 8, S = n Irrep, say N = n SUSY

• If d ≡ 2, 6 mod 8, S = n+ Irrep+⊕n− Irrep−, say N = (n+, n−) SUSY

Example 4.2. In d = 2, R1,1:

SO(1, 1) =

{
eαJ =

(
coshα sinhα
sinhα coshα

) ∣∣∣∣ α ∈ R, J =

(
0 1
1 0

)}
' R>0

Spin(1, 1) ' R× = R \ 0

Dual representations R+ and R−; x ∈ R× acts on R± as x±1

Sym2(R±) ' V±

where
V = V+︸︷︷︸ 1

1


⊕ V−︸︷︷︸ 1

−1


Let Q± be a basis of R± and ∂± be a basis of V±. Then the d = 2 N = (n+, n−) SUSY algebra is

[Qa+, Q
b
+] = −2δab∂+

[Qā−, Q
b̄
−] = −2δāb̄∂−[Qa+, Q

b̄
−] = 2Zab̄ (central charge)

For unitarity,

(Qa+)† = Qa+, (Qā−)†Qā−.
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Example 4.3. d = 3, R2,1. Then
Spin(2, 1) = SL(2,R)

and the real irreducible representation is the fundamental representation.

Let
V = R2,1 = {symmetric 2× 2 real matrices}.

Let

σ0 =

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
.

Then the isomorphism is given by x = (x0, x1, x2) ∈ V maps to

A(x) = xµσµ =

(
x0 + x1 x2

x2 x0 − x1

)
and

|x|2 = −detA(x) = −(x0)2 + (x1)2 + (x2)2.

Then Spin(2, 1) = SL(2R) 3M acts on V via

M : A(x) 7→ (M t)−1A(x)M−1.

There is a natural Spin(2, 1)-equivariant map

Sym2(S)⊗ V R

(S, x) StA(x)S

and so we obtain a map
Γ : Sym2(S)→ V ∨ ' V.

So the N = 1, d = 3 SUSY is given by
[Qα, Qβ ] = −2σµαβ∂µ

where σµ = ηµνσν .

There is a reality condition:
Q†α = Qα

Explicitly (matrix components of σ’s):

[Q1, Q1] = 2∂0 − 2∂1

[Q1, Q2] = 2∂2

[Q2, Q2] = 2∂0 + 2∂1

So: if ∂2 is represented by a constant, then we may do dimensional reduction in this direction to obtain d = 2
N = (1, 1) SUSY.

Upshot:

d = 3, N = 1 d = 2, N = (1, 1)dim

reduction

Example 4.4. d = 4, R3,1. Write

V = {hermitian 2× 2 matrices}.

Let

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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and make the identification by
x = (x0, x1, x2, x3)↔ A(x) = xµσµ,

with
|x|2 = − detA(x).

Then Spin(3, 1) ' SL(2C) 3M acts on V via

M : A(x) 7→ (M t)−1A(x)M−1.

N = 1 SUSY in d = 4:

[Qα, Q̂β̄ ] = −2σµαβ∂µ,

i.e. in matrix components

[Q1, Q̂1] = −2(∂0 + ∂3),

[Q2, Q̂2] = −2(∂0 − ∂3), [Q1, Q̂2] = −2(∂1 − i∂2), [Q2, Q̂1] = −2(∂1 + i∂2),

Then dimensional reduction along ∂3,

{Re(Q1),Re(Q2)} and {Im(Q1), Im(Q2)}

gives two sets of d = 3, N = 2 SUSY.

Upshot:

d = 4, N = 1 d = 3, N = 2dim

reduction

4.2 Lecture 2 (Si Li)

Today we’ll discuss d = 2, N = (2, 2) SUSY σ-model

• topological twists (A/B model)

• BV formalism

4.2.1 Superspace setup

The d = 2 N = (2, 2) superspace is

V N=(2,2) = R1,1 ×ΠR⊕2
+ ×ΠR⊕2

−

= R1,1 ×ΠS+ ×ΠS−

where S± are complex spinors. We write the supercharges in complexified notation as

Q+± = Q1
± + iQ2

±,

Q̄± = Q1
± − iQ2

±

The SUSY algebra is
[Q±, Q̄±] = −2i∂± = H ± P
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Write

x± = x0 ± x1 ∂± =
1

2

(
∂

∂x0
∓ ∂

∂x1

)

Coordinates on V N=(2,2): even x0, x1, odd θ±, θ̄±.

SUSY differential operators:

Q± = ∂θ± − iθ̄±∂± D± = ∂θ± + iθ̄±∂±

Q̄± = ∂θ̄± − iθ±∂± D̄± = ∂θ̄± + iθ±∂±

[Q,D] = 0

A superfield Φ is of the form

Φ(x±, θ±, θ̄±) = φ(x) + θ±η±(x) + θ̄±η̄±(x) + · · ·

where the η, η̄ are fermionic. This describes a map

Φ : V N=(2,2) → C

Definition 4.5. A superfield Φ is called chiral if D̄±Φ = 0.

Observe: D̄±(θ±) = 0 and D̄±(y±) = 0 where

y± = x± + iθ̄±θ±,

so we can write
Φ = Φ(y±, θ±) = φ(y±) + θ±ψ±(y) + θ+θ−F (y).

Definition 4.6. The chiral multiplet is Φ = (φ, ψ±, F ).

Remark 4.3. Φ̄ is antichiral : D±Φ̄ = 0.

Also observe: Q maps chiral fields to chiral fields. Consider a chiral superfield as a map

Φ : V
N=(2,2)
ch → C.

4.2.2 SUSY Action

Consider n chiral superfields

Φ : V
N=(2,2)
ch → Cn.

There are two types of SUSY invariant actions.

(1) D-term: Let K(zi, z̄i) be a smooth function on Cn (Kähler potential).

SD :=

∫
d2x

∫
d2θd2θ̄K(Φi, Φ̄i)

SD is SUSY invariant. Recall Q± = ∂θ±− iθ̄±∂±, then the red terms below are responsible for vanishing:

Q±SD :=

∫
d2x

∫
d2θd2θ̄(∂θ± − iθ̄±∂±)K(Φi, Φ̄i)

(2) F-term: Let W (zi) be a holomorphic function.

SF =

∫
d2x

∫
d2θW (Φi)

∣∣∣∣
θ̄=0

+ c.c.
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4.2.3 Gluing

Observe that for all holomorphic functions h(zi) the transformation

K 7→ K + h(zi) + h̄(z̄i)

leaves the D-term invariant:∫
d2x

∫
d2θd2θ̄K(Φi, Φ̄i) =

∫
d2x

∫
d2θd2θ̄

(
K(Φi, Φ̄i) + h(Φi) + h̄(Φ̄i)

)
Hence the D-term depends only on gij̄ = ∂i∂̄jK (Kähler metric). So we can glue these to a chiral superfield
valued in a Kähler manifold

Φ : V
N=(2,2)
ch → X.

We can also glue on the worldsheet: Φi = (φi, ψiI , F
i) where

φi : Σ→ X

and {
ψi± ∈ Γ(Σ, S± ⊗ φ∗T 1,0

X )

ψ̄ī± ∈ Γ(Σ, S± ⊗ φ∗T 0,1
X )

Hence we get a chiral superfield to a Kähler target

Φ : V
N=(2,2)
ch (Σ)→ X

SD(Φ) =

∫
d2x

[
−1

2
gij̄∂

µφi∂µφ̄
j̄ + igij̄ψ̄

j̄
−D+ψ

i
− + igij̄ψ̄

j̄
+D−ψ

i
+ +Rij̄kl̄ψ

i
+ψ

k
−ψ̄

j̄
−ψ̄

k̄
+ + gij̄(F

i − Γijkψ
i
+ψ

j
−)(F̄ j̄ − Γ̄j̄

k̄l̄
ψ̄k̄−ψ̄

l̄
+)

]
and we write

Dµψ
i
± = ∂µψ

i
± + (∂µφ

j)Γijkψ
k
±.

4.2.4 Topological Twist

Given Φ : V
N=(2,2)
ch (Σ)→ X, want to understand how it transforms under SUSY transformations

δ = ε±Q± + ε̄±Q̄±

where ε±, ε̄± are sections of the dual spin bundles to the Q or Q̄ they contract with (i.e. δ is not a section
of a spin bundle). Then

δS =

∫
Σ

(∇µε±)Gµ± + (∇µε̄±)Ḡµ±

for some expression G (in terms of Noether’s theorem, will be a charge for the supersymmetry). Hence global
supersymmetry implies that for some ε± we have

∇ε± = 0,

a covariantly constant spinor.

Topological twist:

1. Consider a theory with symmetry
Spin(V )×GR

(GR: R-symmetry). Choose a homomorphism

ρ : Spin(V )→ GR.
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2. Consider the new Poincaré symmetry

Spin(V ) Spin(V )×GR GL(S).
1×ρ

3. Find Q ∈ S such that Q lies in a trivial subrepresentation under the new Spin(V ) action, and [Q,Q] = 0.
Such a Q generates a global SUSY.

Example 4.5 (d = 2, N = (2, 2), Euclidean case). So the spin group is SO(2), and a spin structure is
equivalent to choosing a square root of the canonical bundle:

S+ = K1/2 S− = K̄1/2

We have [Q±, Q̄±] = H ± P . The bosonic symmetry of our theory is

SO(2)× U(1)L × U(1)R︸ ︷︷ ︸
R-symmetry

where the “left” and “right” R-symmetries are

S− 7→ e−iα/2S−, S̄− 7→ eiα/2S̄−, (U(1)L)

S+ 7→ e−iα/2S+, S̄+ 7→ eiα/2S̄+, (U(1)R)

We can describe what representation of the symmetry group the various spinor bundles transform under”

S+ S− S̄+ S̄−
SO(2)× U(1)L × U(1)R (1/2, 0,−1/2) (−1/2,−1/2, 0) (1/2, 0, 1/2) (−1/2, 1/2, 0)

Let’s consider two possible twistings.

(I) A-twist: Take

ρA :
SO(2) U(1)L × U(1)R

eiα eiα × eiα

The bundles now transform in the following representations:

A-twist S+ S− S̄+ S̄−
SO(2)× U(1)L × U(1)R (0, 0,−1/2) (−1,−1/2, 0) (1, 0, 1/2) (0, 1/2, 0)

The SO(2)-weight 0 tells us that the SUSY operators Q+ and Q̄− survive globally, and we can take

QA = Q+ + Q̄−.

After the twist, the fermions in the chiral multiplet transform under:{
ψi+ ∈ Γ(Σ, φ∗T 1,0

X )

ψ̄ī+ ∈ Γ(Σ,K ⊗ φ∗T 0,1
X ){

ψi− ∈ Γ(Σ, K̄ ⊗ φ∗T 1,0
X )

ψ̄ī− ∈ Γ(Σ, φ∗T 0,1
X )

Observe: The QA acts like the de Rham differential.

There is a new action functional

SA = QA

∫
d2zV +

∫
Σ

φ∗W

where
V = gij̄(ψ

j̄
+∂̄zφ

i + ψi−∂zφ̄
j̄).
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(II) B-twist: Take

ρB :
SO(2) U(1)L × U(1)R

eiα eiα × e−iα

The bundles now transform in the following representations:

B-twist S+ S− S̄+ S̄−
SO(2)× U(1)L × U(1)R (1, 0,−1/2) (−1,−1/2, 0) (0, 0, 1/2) (0, 1/2, 0)

The SO(2)-weight 0 tells us that the SUSY operators Q̄+ and Q̄− survive globally, and we can take

QB = Q̄+ + Q̄−.

An analogous discussion to the A-twist can proceed from here – we will now go into this.

4.2.5 BV formalism

Recall the AKSZ construction:58

Let (X, dX), (Y, dY ) be two dg spaces, with dg-algebra (OX , dX), (OY , dY ). Assume that

• X is equipped with
∫

: OX → C of degree −k.

• Y is equipped with a symplectic form of degree k − 1.

Then Maps(X,Y ) is a (-1)-shifted symplectic space, dX and dY correspond to {SX ,−} and {SY ,−}, and

S = SX + SY satisfies {S, S} = 0 (CME).

Example 4.6 (Poisson σ-model). (1) T [1]Σ = (Σ,Ω•(Σ)) (i.e. = ΣdR). The integration map is the standard
integration map of degree -2,

O(T [1]Σ) = Ω•(Σ) C
∫

(here Σ is a surface).

(2) T ∗[1]X = (X,PV(X)), where PV(X) = ∧•TX , equipped with the canonical symplectic form of degree 1,
which in local coordinates (xI , θI) looks like

ω = dxI ∧ dθI .

Let P = P IJ(x)∂xI ∧ ∂xJ = P IJ(x)θIθJ be the Poisson tensor. It satisfies {P, P} = 0, and acts on
O(T ∗[1]X) via {P,−}.

Now, consider
Maps(T [1]Σ, T ∗[1]X).

Locally, for ϕI , ηI forms on Σ, the (-1)-symplectic pairing is given by

〈ϕI , ηI〉 =

∫
Σ

ϕI ∧ ηI .

The classical action is

S =

∫
Σ

dϕI ∧ ηI + P IJ(ϕ)ηIηJ

and satisfies {S, S} = 0.

58This was discussed in Dylan’s talk (§5.6).
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In the BV formalism:

• E fields, (-1)-symplectic

• S action solving ∆(eS/~) = 0 (QME)

• Choose L ⊂ E a super Lagrangian submanifold, then∫
L
eS/~

is independent of continuous deformations of L. L is a gauge fixing condition.

Example 4.7 (A-model). Let (X,ω) be Kähler, and consider

E = Maps(T [1]Σ, T ∗[1]X).

ω yields a Poisson tensor ωIJ , and we have an action functional59

SA =

∫
ωIJ(ϕ)ηIηJ =

∫ ij̄

(ϕ)ηiη̄j̄ .

Let’s see how a complex structure on Σ yields a Lagrangian submanifold of E :

• Fields ϕi, ηi and their complex conjugates are forms on Σ

• Represent the four components of the field as

ϕi = (ϕi0, ϕ
i
z, ϕ

i
z̄, ϕ

i
zz̄).

• Under the symplectic pairing, the symplectic dual fields are (presented vertically):

ϕi0 ϕiz ϕiz̄ ϕizz̄
ηi,zz̄ ηi,z ηi,z̄ ηi,0

(There are also complex conjugate fields.)

• Set M to be the space spanned by the orange fields and their complex conjugates. Then

Map(T [1]Σ, T ∗[1]X) = T ∗[−1]M.

• Consider

Ψ =

∫
Σ

d2z
(
ϕ̄j̄z∂̄zφ

i
0 + ϕiz∂zφ

j̄
0

)
gij̄ ∈ O(M).

• Consider LA = Graph(dΨ) ⊂ T ∗[−1]M.

Exercise: Check that SA|LA is the A-model action.

Example 4.8 (B-model). Let (X,ω) be Kähler, and consider

Maps

T [1]Σ︸ ︷︷ ︸
d

, T ∗[1]T 0,1[1]X︸ ︷︷ ︸
∂̄


59Comparing with above – we only have the second term of the Poisson σ-model action, not the first term.
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Locally we have fields and antifields (antifields vertically below fields):{
φi φ̄ī η̄ī

ξi ξ̄ī ūī

We have an action functional

SB =

∫
Σ

dφi ∧ ξi + dφ̄ī ∧ ξī + dui ∧ ηī + ξī ∧ ηī

To figure out a polarisation, write down fields and their symplectic duals as before:

φi0 φi1 φi2 φ̄ī0 φ̄ī1 φ̄ī2 η̄ī0 η̄ī1 η̄ī2
ξi,2 ξi,1 ξi,0 ξ̄ī,2 ξ̄ī,1 ξ̄ī,0 ūī,2 ūī,1 ūī,0

Again take M to be determined by the orange fields, so that

Maps
(
T [1]Σ, T ∗[1]T 0,1[1]X

)
= T ∗[−1]M.

Consider

ΨB =

∫
gij̄φ

i
1 ? dφ̄

j̄
0 −

1

2
Γijkφ

j
1φ
k
1ξi,0 ∈ O(M)

and let LB = Graph(dΦB).

Exercise: Check that SB |LB is the B-model action.

4.3 Lecture 3 (Si Li)

4.3.1 SUSY Localisation

Example 4.9 (N = 1, D = 10 SYM). Set up:

• V = R9,1

• S+ chiral spinor (R16)

• Fields:
E = Ω1(V, g)A ⊕ Ω0(V, S+ ⊗ g)ψ

• Action:

SYMN=1 =

∫
1

4
〈FA, FA〉+

1

2
〈ψ, 6 DAψ〉

Berkovits Construction:
Γ : Sym2(S+)→ V

Let QΓ = Γ−1(0) ⊂ S+. Consider
V ×QΓ ×ΠS+.

Let
B = O(V ×QΓ ×ΠS+)

and choose coordinates {
xµ, λα, θα

on V on S+ on ΠS+

}
B = R{xµ, λα, θα}/(Γµαβλ

αλβ .)
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Define

Q = λα
∂

∂θα
+ Γµαβθ

αλβ
∂

∂xµ
,

which satisfies

Q2 =
(

Γµαβλ
αλβ

) ∂

∂xµ
= 0 on B.

So (B,Q) is a dga, and it is a result of Berkovits that

Crit(SYMN=1)/ ∼= MC(B,Q)/ ∼ .

Example 4.10 (N = 4, D = 4 SYM). Easiest to obtain by dimensional reduction from N = 1 D = 10.
Split

R9,1 = R3,1 × R6

and declare A, ψ to only vary along R3,1 (constant along R6). In 4d the spin group reduces to

Spin(3, 1) × Spin(6) Spin(9, 1)

SL(2,C) SU(4)R

' '

The chiral spinor decomposes as
S+ ⊗R C = (S ⊗ 4̄)⊕ (S̄ ⊗ 4)

where S = C2 and 4 = C4 for SU(4).

Topological twist: Euclidean.

Spin(4) × Spin(6)

SU(2)l × SU(2)r SU(4)R

Look for ρ : SU(2)l×SU(2)r → SU(4)R – describe the homomorphism by what it does to the representation
4:

(1) 4 7→ (2, 1)⊕ (2, 1) (“Vafa-Witten twist”)

(2) 4 7→ (2, 1)⊕ (1, 1)⊕ (1, 1)

(3) 4 7→ (2, 1)⊕ (1, 2) (“GL-twist”)

Now – given a SUSY twist determined by Q, consider the equation
∫
Q(−) = 0.

Example 4.11 (Proto-example: Equivariant localisation). Suppose S1 acts on a spaec X with generating
vector field V . Consider Ω•(X)[u] equipped with

Q = d+ uιV

Q2 = uLV

Define Ω•S1(X) := (Ω•(X)[u])S
1

, on which Q is a differential, and consider (Ω•S1(X), Q). There is an integra-
tion map ∫

X

: Ω•S1(X)→ R[u]

and under this map Q-exact terms vanish ∫
X

Q(−) = 0.
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Let Qα = 0 and consider
∫
X
α. Let g be an S1-invariant metric on X and consider the 1-form

Ψ =
1

u
g(V,−).

Then ∫
X

α =

∫
X

αe−
1
~Q(Ψ).

Now,
QΨ = g(V, V ) + dΨ︸︷︷︸

2-form

so ∫
X

α =

∫
X

αe−
1
~‖V ‖

2+ 2-form.

But the integral doesn’t depend on the value of ~ – so we can send ~ → 0 and localise the integral to the
zeros of V (i.e. the S1-fixed points).

Example 4.12 (A-model). Recall that the action for the A-model is of the form

SA = QA

∫
(· · · )︸ ︷︷ ︸∫

|∂̄φ|2+ fermions

+ topological term

where φ : Σ→ X. So the theory localises to ∂̄φ = 0, i.e. holomorphic maps.

Example 4.13 (B-model). Recall that

SB =

∫
|dφ|2 + · · ·

so the theory localises to constant maps.

4.3.2 B-model

Let’s focus on the B-model situation for a moment. The fields of the original theory were maps to a target
X. Under localisation, the theory can be described by a local QFT on X.

Example 4.14. • Closed string: Localisation gives Kodaira-Spencer theory. (Related to intersection
theory.)

• Open string: Localisation gives holomorphic Chern-Simons theory:

– Fields: Ω0,• ∗X, g)[1]

– Action: HCS[A] =
∫ (

1
2A ∧ ∂̄A+ 1

6A
3
)
∧ ΩX

Computing correlation functions in Poisson σ-model gives 1st order deformations60 of HCS – so Kont-
sevich formality controls deformatiosn of HCS.

For instance, inserting a closed string field operator mu ∈ PV(X) = Ω0,•(X,∧•TX) deforms HCS by∫
X

(µ¬A ∧ ∂A ∧ · · · ∧ ∂A) .

60I.e. a deformation of the HCS solution to the CME.
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4.3.3 Kuranishi model

Begin with the data

E

{s = 0} =M X

s

Think: M is the classical moduli space, s = 0 are the EOM.

Given this data, can construct the localised Euler class of E ⊂M, [M]vir.

Kuranishi model: consider the two-term complex over M[
TX|M E|Mds

]
↓
M

This has

• ker = tangent space of M

• (coker)∨ = obstruction space

The zero locus of s may not have expected dimension, and may be singualr. Consider taking s → λs. As
λ→∞ we localise on the zeros and obtain [Mvir] ⊂M.61

4.3.4 Mathai-Quillen formalism

Start with
E

X

s

and choose

• metric 〈−,−〉 on E

• connection ∇

Consider the supermanifold

T [1](E)[−1]) = T [1]X ⊕ E[−1]⊕ E

X

Choose a local basis {e+α} for E and local coordinates

xµ ψµ χα Bα

deg 0 1 −1 0
X T [1]X E[1] E

61Need to look this up later. Have a headache now.
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Let δ be the de Rham differential,

δxµ = ψµ, δχα = Bα,

and Aβα be the connection 1-form
∇eα = Aβαeβ .

Construct a function S
S = δΨ

where

Ψ = i〈χ, s〉+
1

2
〈χ,B〉+

1

2
〈χ,A · χ〉︸ ︷︷ ︸

Aαβ,µψµχαχβ

Note that e−δΨ is δ-closed.

MQ Construction:

es,∇(E) =

∫
dχdBe−δχ

is a closed differential form on X representing the Euler class, whose de Rham class is independent of the
choice of s and ∇. More explicit expression:

es,∇(E) =
1

(2π)dim(X)

∫
dχe−

1
2 〈s,s〉+

1
2 〈χ,Rχ〉+i〈χ,∇s〉

where R is the curvature 2-form.

Since this is independent of the choice of section, we can consider rescaling

s 7→ λs

Now:

• λ→ 0: Obtain
1

(2π)
·
∫
dχe

1
2 〈χ,Rχ〉 = Pf(R)

and we already knew that the Pfaffian Pf(R) represented the Euler class.

• λ→∞ : Localise to {s = 0}.

Example 4.15 (A-model). Begin by looking at all maps62 ϕ : Σ→ X. Consider the bundle

E

Maps(Σ, X)

whose fibre over a point ϕ is
E|ϕ = Γ(Σ,Hom(T 0,1

Σ , ϕ∗T 1,0
X ))

This bundle has a canonical section s = ∂̄. The zero section is (up to subtleties of compactifications)
holomorphic maps:

E

Mg(Σ, X) Maps(Σ, X)

∂̄

Applying the MQ construction we obtain the A-model action together with the virtual fundamental class
[Mg(Σ, X)]vir.

62All reasonable maps – e.g. could restrict to smooth maps.
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Example 4.16 (SUSY QM). Consider fields ϕ : S1 → X. The space of these maps is precisely the loop
space, and we have a bundle

E

LX

whose fibre over a point ϕ is
E|ϕ = Γ(S1, ϕ∗TX).

This describes infinitesimal motions of a loop in X – i.e. E is precisely the tangent bundle to the loop space,
TLX.

Let t be the periodic coordinate on S1 – then there is a section s = ∂t given by

s(ϕ) =
d

dt
ϕ,

and the zero section is constant maps – i.e. the zero section is precisely X itself. So we have the setup

TLX

X LX

∂t

Applying the MQ-construction, one finds SQM.

Consider fluctuations around the locus of constant maps S1 → X. If we work with the BV formalism
and think of X as a phase space (in particular symplectic) (around the effective neighbourhood of constant
maps), we find that the QME is equivalent to the data of a flat connection on the bundle of Weyl algebras
W(TX) → X. Fedosov uses this to constuct the deformation quantisation of a symplectic connection on a
symplectic manifold, together with some sort of algebraic index theorem [Fed94].
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5 TA Sessions

5.1 Session 1 (Theo)

5.2 Session 2 (Chris): Supersymmetry Algebras

Motivation: When we study QFT on (Rn, g) with g a pseudo-Riemannian metric of signature (p, q), often
we’d like invariance under symmetries of Rn.

Definition 5.1. The Poincaré group is

ISO(p, q) = SO(p, q) nRn.

It has Lie algebra
iso(p, q) = so(p, q) nRn

with complexification
iso(n;C) = so(n;C) nCn.

We have the following no-go theorem:

Theorem 5.1 (Coleman-Mandula). If G ⊇ ISO(n − 1, 1), n ≥ 4, acts on a “nice” QFT, then G =
ISO(n− 1, 1)×G′. G′ are the “internal symmetries” of the theory.

One can get around this by studying Z/2-graded extensions of the Poincaré group.

Remark 5.1. We’re going to omit discussion of the different real structures on the complexified group/algebra.

Definition 5.2. An n-dimensional super Poincaré algebra is a super Lie algebra63

A = iso(n;C) n ΠΣ

with further bracket
Γ : Σ⊗ Σ→ Cn,

and where Σ is a spinor representation of so(n,C).

Classifying super Poincaré algebras means classifying two pieces of data:

1) Representation Σ

2) Pairing Γ : Σ⊗ Σ→ Cn

We can classify spinor representations of so(n;C). There is either

• one irreducible spinor representation S if n is odd, or

• two non-isomorphic spinor representations if n is even.

In terms of the Dynkin diagrams:

• For type Bn we are taking the fundamental representation corresponding to the rightmost node (the
unique long simple root).

63Π denotes the parity shift functor.
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• For type Dn we are taking the fundamental representations associated to the two “branched” simple
roots in the diagram.

Remark 5.2. There is a SUSY version of Coleman-Mandula by Haag-Lopusanski-Sohnius for super Poincaré
algebras – we won’t state it, but it is the reason that we restrict to these fundamental representations.

So, the possibilities for Σ are:

• Odd case: Σ = S⊗W , where S is the Dirac spin representation and W is a finite dimensional auxilliary
vector space.

• Even case: Σ = S+⊗W+⊕S−⊗W− where S± are the Weyl spinor representations (with Dirac spinor
S = S+ ⊕ S−), and W± are again auxilliary spaces.

CLassification of pairings:

These are equivariant symmetric maps
Σ⊗2 → V = Cn;

in other words, we’re looking for irreducible summands of Sym2(Σ) which are isomorphic to V .

• Odd case: S ⊗ S ∼= C+(V ), the even Clifford algebra. Using that ∧k ∼= ∧n−k,

S ⊗ S ∼=
⊕
k even

∧kV ∼=

n−1
2⊕

k=0

∧kV

and in particular, one summand is isomorphic to ∧1V = V .

• Even case: We have

(S+ ⊕ S−)⊗2 ∼= C(V ) ∼=
n⊕
k=0

∧kV = 2

n
2−1⊕
k=0

∧kV

⊕ ∧n/2V,
so there are two copies of V .

Lemma 5.2. With the exception of n = 2:

• If n is odd, there exists a unique irreducible summand of S⊗2 isomorphic to V .

– n ≡ 1, 3 mod 8, contained in Sym2(S)

– n ≡ 5, 7 mod 8, contained in ∧2S

• If n ≡ 0, 4 mod 8, there exists a unique irreducible summand of S+ ⊗ S− isomorphic to V .

• If n ≡ 2, 6 mod 8, there exists a unique irrducible summand of S⊗2
± isomorphic to V . There is no such

summand in S+ ⊗ S−.

– If n ≡ 2 mod 8, inside Sym2(S±)

– If n ≡ 6 mod 8, inside ∧2S±

We can rephrase this in terms of the classification of Γ-pairings. A choice of super Poincaré algebra is a
choice of:

• An orthogonal vector space W if n ≡ 1, 3 mod 8.
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• A pair of orthogonal vector spaces W+ and W− if n ≡ 2 mod 8.

• A single vector space W = W+ with dual W ∗ = W− if n ≡ 0, 4 mod 8.

• A single symplectic vector space W if n ≡ 5, 7 mod 8.

• A pair of symplectic vector spaces W+ and W− if n ≡ 6 mod 8.

The above is precisely the data required to give a symmetric pairing on the representation Σ.

Terminology.

Usually indicate a choice of super Poincaré algebra by giving

dimW = N or (dimW+,dimW−) = (N+,N−)

Example 5.1. 3d N = 4 means
(so(3;C) n (C3 ⊕Π(S ⊗W ))

with W of dimension 4.64

Remark 5.3 (Exception!). If n ≡ 5, 6, 7 mod 8 (symplectic cases),

N =
dimW

2
N± =

dimW±
2

,

so that N = 1 is always the least possible.

5.2.1 R-symmetry

Consider GR, the group of outer automorphisms of A super Poincaré fixing the even part. These are given
by the automorphisms of W . I.e. by our classification above:

• O(W ) if n ≡ 1, 3 mod 8.

• O(W+)×O(W−) if n ≡ 2 mod 8.

• GL(W ) if n ≡ 0, 4 mod 8.

• Sp(W ) if n ≡ 5, 7 mod 8.

• Sp(W+)× Sp(W−) if n ≡ 6 mod 8.

Note that these are the symmetries of the algebra – they may not all be present in any particular SQFT.
Generally, one chooses g ⊆ Lie(GR) and considers the SUSY algebra

g⊕ so(n;C) n (Cn ⊕ΠΣ),

remembering that g acts on Σ (this determines the bracket structure of g with odd elements).

5.2.2 Square-zero elements

One can consider Q ∈ Σ such that Γ(Q,Q) = 0. These determine cohomological structures on SUSY QFTs.
From this we can consider twisting : add Q to the BV-BRST differential65 of a SUSY QFT.

Example 5.2. If Γ(Q,−) : Σ→ Cn is surjective, we say that Q is topological.
64Theo has notational qualms about this, but hey, we do the best we can for the moment.
65I.e. cook up a double complex, and then take the total complex.
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5.2.3 Dimension 1

so(1;C) is trivial, so the SUSY algebra is just

C⊕ΠW

with bracket given by a bilinear pairing on W . Square zero in this case means null : 〈w,w〉 = 0.

Example 5.3 (N = 2). Null vectors are of the form (1, i) or (1,−i). In N = 2 SQM these give rise to the
supercharges Q and Q† from Matt Bullimore’s first lecture.

5.2.4 Dimension 2

SO(2;C) ∼= C×. S± have weight ± 1
2 , and V = C2 has weights (1,−1). So,

Σ = W
(1/2)
+ ⊕W (−1/2)

−

and square zero elements are (w+, w−) both null. The first topological twisting (square zero elements) happen
for N = (2, 2).

5.2.5 Dimension 4

There is an exceptional isomorphism

so(4;C) ∼= sl(2;C)+ ⊕ sl(2;C)−

with S± the corresponding defining representations. V ∼= S+ ⊗ S−. Then

Σ = S+ ⊗W ⊕ S− ⊗W ∗

and square zero supercharges correspond to pairs of subspaces WQ+ ⊆ W and WQ− ⊆ W ∗ which pair to
zero. (E.g. WQ+

is the image of the induced map S∗+ →W .)

5.3 Session 3 (Natalie): 2d Yang-Mills

We’re going to discuss 2d Yang-Mills in Euclidean signature – there’s a lot of literature on this, but the
primary reference for this talk is the review by Cordes-Moore-Ramgaalam.

5.3.1 Review: Yang-Mills

We’ll focus on gauge groups G = U(N) and SU(N). The basic action functional is

S =
1

4e2

∫
Σ

tr(F ∧ ?F )

where F ∈ Ω2(Σ, gPN ) is the curvature of a connection A on a principal G-bundle PN .

This simplifies in dimension 2, since we can take:

?F = f, f ∈ Ω0(Σ, gPN )

F = fµ, µ an area form on Σ
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Remark 5.4. The above works for oriented surfaces. This can be generalised to the unoriented case by working
with densities where appropriate.

So in 2d we have

S =
1

4e2

∫
Σ

µ tr(f2);

this is in fact invariant under a very large symmetry group: SDiff(Σ), the orientation preserving diffeomor-
phisms of Σ.

Classically: (Atiyah-Bott)
dA(?F ) = 0,

so we can study covariantly constant sections X of gPN . Using this, there is a way to study Yang-Mills
solutions by studying “holonomies” – we won’t say too much about this.

Hilbert space: There are various derivations of the Hilbert space, with solution

L2(A/Ĝ) = {square-normalisable class functions on G}.

If we were working in d-dimensions, then on a (d − 1)-manifold Y the theory would assign the above space
with the interpretation:

• A: space of connections on PN

• Ĝ: Map(Y,G)

In 2d, by the Peter-Weyl theorem,

L2(A/Ĝ) =

 ⊕
R:irreps of G

R⊗R

G

.

The pairing on this space is

〈f1|f2〉 =

∫
G

dU f1(U)f2(U)

where dU is the Haar measure on G normalised so that vol(G) = 1.

Consider the theory on a cylinder S1
L × R where S1 has circumference L. Then

ψ[Aa(x)] = ψ

P exp

∫ L

0

dxA(x)︸ ︷︷ ︸
≡U


is a class function, and the wavefunctions are given by

χR(U) = 〈U |R〉

(χR the character of the representation R).

The Hamiltonian is

H =
e2

2

∫ L

0

δ

δA(x)

δ

δA(x)

and so

H|R〉 =
λL

2
C2(R)|R〉
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where λ = e2N is the ‘t Hooft coupling and C2(R) is the value of the quadratic Casimir on R.

Recall from Davide’s lectures: To define a QFT, can try to define a discretized theory and then take
a continuum limit. For 2d Yang-Mills, this discretization is an exact procedure – the answers in the theory
discretized on a mesh agree with the continuum limit (in particular we will see that partition functions are
invariant under subdivisions of a mesh).

5.3.2 Discretisation

Cover Σ by a polygonal mesh. Let’s consider a lattice gauge theory:

• For V the vertex set we assign

V G

x gx

• To a directed edge γ : x → y, assign holonomy variables Uγ ∈ G. Moving from x to y is the parallel
transport

gyUγg
−1
x

• Discretized action:
e−
∫
L →

∏
i

e
−
∫
Wi
Li

where Σ is divided into plaquettes Wi, i = 1, . . .

If U = U1U2 · · · is a loop of edges surrounding a plaquette W with area aW , then the local contribution to
the action is (

e−
∫
W
L =

)
Γ(U , aW ) :=

∑
α∈Irrep(G)

dim(α)χα(U) exp

(
−aw

c2(α)

2

)
As a→ 0 this limits to the δ-function δ(U − 1); i.e. there is no holonomy around a “constant” loop.66

Let the subdivision on Σ be denoted by X, assign Σ area a (choice of area form); then the partition function
is

ZΣ,X(a) =

∫ ∏
γ: edges

dUγ
∏

i:plaquettes

Γ(Ui, ai)

Claim: If X ′ is a subdivision of X,
ZΣ,X(a) = ZΣ,X′(a).

Consider a subdivision of a square plaquette:

•

• •

•

U3

U4
V

U2

U1

where the areas of the top and bottom triangle are a′ and a′′, and the original area of the square plaquette
is a0 = a′ + a′′.

66There is presumably also some argument regarding flatness of connections?
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Now,

Γ′Γ′′ =
∑
α,β

dim(α) dim(β)χα(U1U2V )χβ(V −1U3U4) exp(· · · ),

and then ∫
dV Γ′Γ′′

by the orthogonality relation ∫
dV χα(AV )χβ(V −1B) = δαβ

1

dim(α)
χα(AB).

Now: the fundamental group of Σ is generated by elements {a1, . . . , ag, b1, . . . , bg} satisfying the relation
a1b1a

−1
1 b−1

1 · · · a−1
g b−1

g ; so take the corresponding “single plaquette” discretisation of Σ with holonomy vari-
ables Ui, Vi corresponding to the ai and bi generators. Then:

ZΣ(a) =
∑

α∈Irrep(G)

dim(α)e−a
C2(α)

2

∫
dUidVjχα(U1V1U

−1
1 V −1

1 · · · ) =
∑
α

e−a
C2(α)

2

dim(α)2g−2

There is a corresponding analysis for a surface with b boundaries. Here one needs to give boundary conditions
– prescribed holonomies Ui around each of the boundary circles; the corresponding answer is

ZΣ(a, U1, . . . , Ub) =
∑
α

e−a
C2(α)

2

dim(α)2g+b−2

b∏
i=1

χα(Ui).

Remark 5.5. One can also arrive at this answer by starting with the TFT axioms of Atiyah and Segal – one
needs to know what to assign to a pair of pants, disk, etc. all labeled by an area parameter.

5.3.3 First order formalism

For the purposes of today’s talk, we’ll treat this as just a way to rewrite the action. The 2d Yang-Mills action
becomes

S = −1

2

∫
i tr(BF ) +

1

2
e2

∫
tr(B2)µ.

Various aspects of the theory become more transparent in this formalism – e.g. taking the area of the surface
to zero kills the second term and one is left with BF -theory, an honest topological field theory.

Reference: Mnev-Irasu from 2018.

5.3.4 Wilson Lines

Choose a collection of simple closed curves Γ, and write the complementary components of Σ as

Σ \
∐

Γ =
∐
C

ΣC

so that C labels the connected components. Then we can take the expectation value of a product of Wilson
line observables labeled by representations RΓ:

〈
∏
Γ

W (RΓ,Γ)〉 =

∫ ∏
Γ

dUΓ

∏
C

(
ZΣC (aC , UClΓ=C , U

−1
CrΓ=C)

)∏
Γ

W (RΓ,Γ)

=
∑
R(C)

∏
C

(dimR(C))χ(ΣC) × (· · · )× (factors of Clebsch-Gordon coefficients)

(Recall that the CG coefficients are the multiplicities of irreps appearing in the tensor product of irreps.)

Similarly, if one takes intersecting Wilson lines, there is a similar story where instead of the Clebsch-Gordon
coefficients, the 6j-symbols appear. Related to work of Kevin, Witten, Yamazaki(?), others...
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5.3.5 Another interesting limit

Recall the ’t Hooft coupling λ = e2N . One can also consider taking large N limits, looking at expansions in
powers of 1

N – no time to talk about this today, however.

5.3.6 Questions

Question 4. What about gauge theories with matter?

Answer 5.1. Introducing matter breaks metric invariance and messes up solubility of the theory.

Question 5. Any interesting subtleties by considering groups outside of type A?

Answer 5.2. Yes. Answers written down in the cited review, at least for the classical groups.

Question 6. Do higher Casimirs appear at all?

Answer 5.3. Possibly in a non-polynomial deformation of the theory? Who knows.

5.4 Session 4 (Chris): 4d Yang-Mills and Asymptotic Freedom

Rough plan:

(1) Classical Yang-Mills in BV formalism

(2) The β-function and asymptotic freedom

(3) Quantization of Yang-Mills

5.4.1 Yang-Mills on R4

We’re going to talk about 4d Yang-Mills theory with matter. Choose:

• G simple compact Lie group

• V a representation of G

The fields of the theory are:

• A: gauge field in Ω1(R4; g) – boson

• ψ: spinor section in Ω0(R4;S ⊗ V ) where S = S+ ⊕ S− (Dirac spinor bundle) – fermions

Transform under the gauge group by conjugation – for c ∈ Ω0(R4; g),

A 7→ A+ dA(c)

To define the action, choose:

• G-invariant pairing µ : V ⊗ V → R

• positive operator m : V → V (mass matrix)
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Then the action is

S(A,ψ) =

∫
R4

1

2
‖FA‖2 + µ(ψ, (6 dA +m)ψ)

where 6 dA is the Dirac operator, coming from Clifford multiplication ρ : Ω1 ⊗ S → S as

6 dAψ = ρ(dAψ).

The BV complex for pure Yang-Mills is

(Epure, Q) = Ω0 Ω1 Ω3 Ω4d d?d d

but there is no choice for QGF . To deal with this, we’ll rewrite this in first order formalism.

Introduce B ∈ Ω2
+(R4; g) a self-dual field, ?B = B. The first order formalism action is

SFO(A,B, ψ) =

∫
R4

〈FA, B〉L2 − 1

2
‖B‖2 + µ(ψ, (6 dA +m)ψ).

The classical BV complex in first order formalism with matter is67

0 1 2 3

Ω0(R4, g)C Ω1(R4; g)A Ω2
+(R4; g)B∨

Ω2
+(R4, g)B Ω3(R4, g)A∨ Ω4(R4; g)C∨

Ω0(R4;S ⊗ V )ψ Ω0(R4;S ⊗ V )ψ∨

d d?

d

−id

d

m+6d

with
I = 〈B, [A ∧A]〉+ µ(ψ, 6 Aψ) + (A∨, [c, A]) + ([c, ψ], ψ∨) + ([c, c], c∨)

This is homotopy equivalent to 2nd order YM coupled to trivial B.

Steps for BV quantization:

1) The purely free part:

a) Choose a gauge fixing QGF , [Q,QGF ] a generalised Laplacian

b) Calculate the kernel KL mollifying the kernel for [Q,QGF ] ∈ E ⊗ E ; splits into a sum over “particle
species” i.e. pairs α⊗ α∨ paired by symplectic form.

c) Calculate the propagator

P (ε, L) =

∫ L

ε

dt (QGF ⊗ 1)Kt,

splits into a sum as above over α⊗ β where |α|+ β|+ 1 = 3.

2) Calculate I[L], first step is to try
lim
ε→0

W (P (ε, L), I);

this will be divergent. Choose ICT (ε) so that

lim
ε→0

(W (P (ε, L), I)− ICT (ε))

exists; many ways of doing this. (Result is a free theory – i.e. free theories are unobstructed.)

67Subscripts indicate names of corresponding fields.
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3) Try to solve the QME, try adding some J to

Ĩ[L] = lim
ε→0

(W (P (ε, L), I)− ICT (ε));

J must be a potential for failure of Ĩ to solve QME. I.e. no guarantee that a solution to QME will exist.68

5.4.2 Local RG flow

Kevin explained today that

RλI[L] = I[L] + log λ+ · · ·+ higher order terms ∈ Oloc[λ±1, log λ].

Definition 5.3. The β-functional at scale L is the observable

Oβ [L] =
d

d log λ
RλI[L]

∣∣∣∣
λ=1

∈ Oloc(Rn)[[~]].

We’d like to have just a nice function of the coupling constant. Write

Oβ [L] =

∞∑
i=0

O(i)
β [L]~i.

Fact: For scale invariant theories, limL→0O(1)
β [L] exists and is BV-closed. Moreover the cohomology class[

lim
L→0
O(1)
β [L]

]
is independent of choices of ICT (ε), etc.

Definition 5.4. The 1-loop β-function is this class β(1) :=
[
limL→0O(1)

β [L]
]
.

Theorem 5.3 (Physics Theorem: Gross-Wilczek-Politzerm 1973). For Yang-Mills,

β(1)(g) =
−g3

16π2

(
11

3
C(g)− 4

3
C(V )

)
.

A theory is asymptotically free if β(1) is negative.

Example 5.4. SU(N) with f fundamental flavours: β(1) is negative if f < 11
2 N .

Lemma 5.4. For scale and translation invariant theories which are strictly renormalisable at 1-loop, O(1)
β [L]

is cohomologous to the log part of the 1-loop counterterm ICTlog ε(ε).

5.4.3 BV Quantisation of Yang-Mills

Choose gauge fixing as below:

0 1 2 3

Ω0(R4, g)C Ω1(R4; g)A Ω2
+(R4; g)B∨

Ω2
+(R4, g)B Ω3(R4, g)A∨ Ω4(R4; g)C∨

Ω0(R4;S ⊗ V )ψ Ω0(R4;S ⊗ V )ψ∨

d d?

d∗ 2d∗

d

−id
−2d∗

d

−2d∗+

−2d∗

d∗

m+6d

6d−m

68The calculation for 4d Yang-Mills is the done by Kevin in his book; the obstruction there vanishes.

149



Here the vertical differentials are the compositions of the relevant diagonal and horizontal maps.

The heat kernel Kt splits into a sum proportional to scalar

kt(x, y) =
1

(4πt)2
e
−|x−y|2

4t

E = C∞(R4)⊗ (Y ⊗ g︸ ︷︷ ︸
pure

⊕S ⊗ V︸ ︷︷ ︸
matter

)

and end up with
Kt = KAA∨ +KBB∨ +KCC∨ +Kψψ∨ .

Propagator.

Apply QGF ⊗ 1 to Kt.

Lemma 5.5. The propagator has the form

P (ε, L) =

∫ L

ε

dt

(
∂kt
∂xi

(x, y)(P iAB + P iA∨C) +
∂2kt
∂xi∂xj

P ijAA +
∂kt
∂xi

P iψψ

)
where the subscripts on the propagator denote which factor of the tensor square of E it belongs to.

The 1-loop Feynman diagrams all have the forms of “wheels” – Γk is a single loop with k vertices, each with
a single external edge (“spoke”) protruding.

Lemma 5.6. The weight associated to Γk has no log(ε) divergence unless k = 2.

So the only diagrams that contribute have the shape (ignore arrow directions):

• •

There are six possibilities for the external edges and internal propagators:

• •A
AB

BA
A

• •A
A∨C

CA∨
A

• •B
AB

AA
A

• •B
AA

AA
B

• •A

ψψ

ψψ
A

• •ψ
AA

ψψ
ψ

It turns out that we don’t need to actually calculate the grey diagram, as its weight is BV-exact.
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5.5 Session 5 (Du Pei): Verlinde Algebras and 2d TQFTs

Think of this as part two of a lecture series started by Natalie in 5.3.

5.5.1 2d Yang-Mills Theory

Recall the following facts about 2d Yang-Mills theory:

(1) Almost topological, dependence on e2 × (area).

(2) As e2 → 0 on obtains a “2d TQFT” called “BF theory”. It doesn’t satisfy the Atiyah-Segal axioms
however – e.g. Z(T 2) should compute the dimension of the space of states on a circle – but this in infinite
dimensional, so Z(T 2) =∞. Similarly Z(S2) =∞.

(3) In situations where it is well-defined however, it can be used to compute the volume of Mflat(Σ, G).

For today,

• G is a compact, simple, simply-connected Lie group

• Σ is a closed Riemann surface

Today: Construct a family of 2d TQFTs parametrised by (G, k), k ∈ Z≥0 the “level”.

Fact:
2d TQFT↔ commutative Frobenius algebra

For the TQFT we will study today, the corresponding Frobenius algebra is the Verlinde algebra for Gk.

(1) In the world of 2d CFTs/Vertex operators algebras/affine Lie algebras, the Verlinde algebra computes
the “Fusion rule of the Wess-Zumino-Witten model”.

(2) In the world of 3d TQFTs/quantum topology, the Verlinde algebra gives you the “algebra of line defects
in Gk Chern-Simons theory”.

(3) Count “non-abelian theta functions” on Mflat.

(4) Quantum cohomology/K-theory on Grassmannians.

So: how do we go from the data (G, k) to a commutative Frobenius algebra (V, ?, (−,−), 1V ):

• V :finite dimensional vector space over C

• ? : V × V → V multiplication (“fusion rule”)

• (−,−) : V × V → C symmetric bilinear pairing

• 1V : C→ V unit

Conditions:

• (V, ?, 1V ) is an associative and commutative unital algebra

• (−,−) is nondegenerate
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• Compatibility of pairing and product: (a ? b, c) = (a, b ? c)

Example 5.5 (G = SU(2)). For SU(2) at level k, dim(V ) = k + 1. There exists a nice basis e0, . . . , ek,
where one thinks of eλ as the integrable representation of LSU(2)k associated with highest weight λ ∈
Λwt(SU(2)) ' Z.

We use the following notation for the fusion product structure coefficients

eλ1
? eλ2

=
∑
λ3

fλ
3

λ1λ2
eλ3

and the pairing
(eλ1

, eλ2
) = ηλ1λ2

.

Use η to lower indices:

fλ1λ2λ3
:=
∑
µ

fµλ1λ2
ηµλ3

.

We can write

fλ1λ2λ3
=

{
1, if λ1 + λ2 + λ3 is even, ∆(λ1, λ2, λ3) ≤ 0,
0, otherwise,

∆(λ1, λ2, λ3) = max{λ1 − λ2 − λ3, λ2 − λ1 − λ3, λ3 − λ1 − λ2, λ1 + λ2 + λ3 − 2k},
ηλ1λ2 = δλ1λ2 .

Finally, e0 is the unit.

The relation between the 2d TQFT Z and the Frobenius algebra is as follows:

• Z(S1) = V

• ? corresponds to the pair-of-pants

• (−,−) corresponds to the macaroni

• 1V corresponds to the cup

Example 5.6. For SU(2) and Σ genus 2, we can decompose into two joker hats, and so compute69

Z(Σ) =
∑

λ1λ2λ3

f2
λ1λ2λ3

=
∑

λ1λ2λ3

fλ1λ2λ3
=

1

6
k3 + k2 +

11

6
k + 1

which is the “(k + 1)st tetrahedral number”.

The leading coefficient, 1
6 can be rewritten in at least 2 interesting ways:70

(1) 1
6 = vol)CP3

(2) 1
6 = 1

π2 ζ(2)

To explain the first expression, note that

CP3 =Mflat(SU(2),Σ)

69Using that f2λ1λ2λ3
= fλ1λ2λ3

since the only possible values are 0 and 1.
70Interesting 6= meaningful, although presumably the following is meaningful.
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equipped with the Atiyah-Bott symplectic form ω ∈ H2(CP3;Z), and that∫
CP3

eω =

∫
CP3

ω3

6
=

1

6
.

To relate this to the 2d Yang-Mills partition function, note that

1

π2
ZBF (G,Σ) =

1

π2

∑
R∈Irrep(SU(2))

1

(dimR)2
=
ζ(2)

π2

which explains the second expression.

In general, if one considers the expression

lim
k→∞

(
ZV er(Σg)k

−(3g−3)
)

= vol(Mflat) =
2

(2π2)g−1
ZBF (Σg)︸ ︷︷ ︸
ζ(2g−1)

.

Remark 5.6. Recall that ZBF is the zero area limit of ZYM .

One can ask what the Verlinde partition function is counting in general. In totality (i.e. not coefficient by
coefficient),

ZV er(Σ) = dimH0(Mflat,Lk).

To understand this, note that the moduli space of flat connections can be identified with the moduli space of
holomorphic GC-bundles over Σ, and this moduli space is equipped with a natural “determinant line bundle”.
The sections are called “non-abelian theta functions” by analogy with the following example:

Example 5.7 (G = U(1)). Then GC = C×, Mflat ' Jac(Σ), and the sections of H0(Jac(Σ),Lk) are the
Riemann theta functions of order k.

We have a nice explicit description in the following familiar example:

Example 5.8 (G = SU(2)). Take Σ to have genus 2, so that we are looking at CP3. Then L = O(1) and

H0(CP3;Ok) =

{
homogeneous polynomials in

4 variables of degree k

}
=

1

6
k3 + k2 +

11

6
k + 1.

Further, this is equal to

χ(CP3,O(k)) =

∫
CP3

Td(CP3)ekω.

For more general G, choose a maximal torus T ⊂ G with Lie(T ) = t. Then

(k + h)〈−,−〉 : t→ t∗

where 〈−,−〉 is the Killing form and h is the dual Coxeter number. This can be exponentiated to a map

χ : T → T ∗

and we set
F := χ−1(1).

Then the Verlinde algebra is
C[F reg/W ]

with the algebra structure given by multiplication of functions. A complete basis is given by

Θλ :=
∑
w∈W

ew(λ)∏
α<0(1− ew(α))

∈ V
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– which is just the Weyl character formula – where λ is a dominant weight such that 〈λ, θ〉 ≤ k (θ is the
highest root). The pairing is

(Θλ1
,Θλ2

) = δλ1λ∗2

and the unit is Θ0, the constant function.

How can we diagonalize the fusion rule? I.e. find

wλ ? wλ′ ∼ δλλ′wλ.

One can canonically identify

F reg/W {integrable representations}

exp
(

(λ+ρ)∨

k+h

)
λ

∼

Let fµ be the δ-functions non-zero on µ ∈ F reg/W . Then the change of basis is given by the matrix Θλ(µ).
In fact, the S-matrix of the 3d TQFT is given by

Sλµ = cΘλ(µ)

for some constant c (this is in Verlinde’s original paper).

Upshot: The S-matrix diagonalises the fusion rule!

Problem 21. Do the following calculation:

ZV er(Σg, G) =
∑
λ

(S0λ)2−2g

This equality is called the Verlinde formula.

Example 5.9. For SU(2),

Sλµ =

(
2

k + 2

) 1
2

· sin
(
π(λ+ 1)(µ+ 1)

k + 2

)
.

Question: Is there a Lagrangian one can start with to derive this?

Answer: G/G gauged WZW model. But this theory is the same as 3d Chern-Simons theory on S1, and it
is easier to use 3d Chern-Simons theory to derive this formula. Moreover, 3d Chern-Simons theory can be
boosted up to (non-topological) 3d N = 2 super Chern-Simons theory – one can ask whether one finds extra
information by doing this (open problem).

5.6 Session 6 (Dylan): AKSZ and Boundaries

Today will be fast and about doing calculations.

Also: everything is classical today (except maybe right at the end).

5.6.1 Preliminaries

Definition 5.5. An n-shifted symplectic structure on X is a non-degenerate, closed71 2-form

ωX : TX ⊗ TX → K[n].

71In the fancy sense.
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Example 5.10. For S ∈ O(Y ), dCrit(S) = O(T ∗[−1]Y ), ιdS . This is (-1)-shifted symplectic.

Very explicit: Y = C∞(M),

T ∗[−1]Y =
C∞(M) Ωn(M)

0 1

d?d

Example 5.11. Let G be a group,
〈−,−〉 : g⊗2 → K

a non-degenerate ad-invariant form. Then BG is 2-shifted symplectic;

T0BG = g[1]⊗2 → K[2].

The following definition is in square quotes.

Definition 5.6. A d-orientation on M is a non-degenerate integration map∫
M

: Γ(M,OM )→ K[−d].

Example 5.12. For M a smooth manifold there is a “space” MdR. This is a locally ringed space over M
with structure sheaf defined by

Γ(U,OMdR
) = (Ω•U , ddR).

For Md closed and oriented, MdR is d-oriented.

Example 5.13. For X a Calabi-Yau variety of dimension d,

Γ(X,OX)→ K[−d]

by Serre duality.

5.6.2 AKSZ Theories

These are theories that arise by studying shifted symplectic mapping stacks.

Theorem 5.7. Let X be n-shifted symplectic and M d-oriented. Then Maps(M,X) is n−d shifted symplectic.

“Proof”. Tf Maps(M,X) = Γ(M,f∗TX) = E . Take

Tf Maps(M,X)⊗2 Γ(M,OM )[n] K[n− d]
f∗ωX

∫
M

Then prove that this construction gives us a shifted symplectic structure.

Example 5.14. Let V be a symplectic vector space,

T0 Maps(RdR, V ) ' Ω•R ⊗ V

and we recall from Kevin’s lectures that quantising this will give us the Weyl algebra on V . This is (-1)-shifted
symplectic.

Example 5.15. T0 Maps(M3
dR, BG) = Ω•M3⊗g[1], phase space for Chern-Simons theory. This is (-1)-shifted

symplectic.

Example 5.16. In Example 5.15, replace BG by a holomorphic symplectic manifold X; then we get
“Rozansky-Witten theory”, a twist of 3d N = 4 SYM. This gives you a (−3)-shifted symplectic space –
so some extra work is required to understand the theory.72

72The theory is “only Z/2-graded”. In particular – there is no U(1) R-charge enhancing the fermion grading to a Z-grading.
If X were a cone we should be able to fix this.
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Example 5.17. The B-model to X a complex variety is Maps(ΣdR, T
∗[1]X).

Example 5.18 (4d Chern-Simons). Maps(C× R2
dR, BG)

Example 5.19 (5d Chern-Simons). Maps(C2 × RdR, BG)

Example 5.20 (6d Chern-Simons). Maps(X3, BG), X3 Calabi-Yau 3-fold.

Example 5.21. For π the 2-shifted symplectic structure on BG we have: Maps(M4
dR, T

∗
(π)[3]BG) is the

Kapustin-Witten B-twist (generic twist).

Example 5.22. Maps(M3
dR × C, T ∗[3]BG) twist of 5d N = 2.

5.6.3 Classical Field Theory on Manifolds with Boundary

Let M be a compact oriented d-manifold with boundary, with ∂M = N closed and oriented. If we take X a
(d− 1)-shifted symplectic space, then

Maps(MdR, X)

would have defined an AKSZ-theory. Since M has boundary, however, this is no longer symplectic. However,

Maps(NdR, X) is 0-shifted symplectic;

think of this as like a phase space (we’ve restricted to a codimension 1 slice).

But good news! There is a restriction map

Maps(MdR, X) Maps(NdR, X)res

and it can be given the structure73 of a Lagrangian map.

Remark 5.7. Didn’t need to study an AKSZ theory, however describing the version of the space Maps(NdR, X)
one gets in that situation is a bit trickier (will get some space of germs of solutions to differential equations).

Fact: If L1, L2 → X Lagrangian mapping to X k-shifted symplectic, then

L1 ×X L2 is (k − 1)-shifted symplectic.

So in our situation, if we choose some Lagrangian L→ Maps(NdR, X), then the fibre product is (−1)-shifted.

Remark 5.8. The choice of L will be a choice of boundary condition. We will later try to rule out non-local
boundary conditions, an example of which is precisely the restriction map from M .

What does the choice of L give us, and why are they boundary conditions? We define the classical observables
on an open set intersecting the boundary to be (Figure 47)

Obscl(V ) = O

E ×E(V ∩∂M) L︸ ︷︷ ︸
=:EL

 ,

so that L is precisely telling us “which fields on V we are allowed to restrict to the boundary in our theory”.

Definition 5.7. A local boundary condition for E is a Lagrangian subbundle of E∂ “compatible” with the
equations of motion.

73We’re working derived dontcha know.
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Figure 47: “Lagrangians are boundary conditions”: A choice of L yields a choice of boundary observables.

Boundary Theories.

The fields which survive at ∂M have their own dynamics: if the equations of motion are well-posed with
respect to the boundary condition L, we have an isomorphism from solving the equations of motion

L(V ∩ ∂M) ' EL(V ).

But now: we had a P0 factorisation algebra in the bulk M , and performing this extension procedure on open
sets in N we conclude that

O(L) defines a P0-factorisation algebra on N .

Example 5.23 (1-dimensional case). Let X be a symplectic manifold,74 and let

E = Maps(R≥0
dR, X).

Then E∂ = X is 0-shifted symplectic. Let L→ X be a Lagrangian map to X. Consider the formal completion
of X around L,

X̂L = (NL,Q)

where NL is the normal bundle to L in X and Q is a homological vector field. Via the symplectic form
we have an isomorphism NL ' T ∗L, and Q turns out to preserve the symplectic form. Under reasonable
assumptions Q is Hamiltonian with Hamiltonian function S ∈ O(T ∗L)[1],

X̂L ' (T ∗L,Q = {S,−}).

Now O(T ∗L)[1] = PV•−1(L) (shifted polyvector fields), so,

S = Q+ Π + Π(3) + · · · ,

and ~Π defines a homotopy P0 structure if and only if {S, S} = 0.

740-shifted symplectic.
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Example 5.24. Let

E = T0 Maps(ΣdR, T
∗[1]BG) =


−1 0 1 2

Ω0 Ω1 Ω2

Ω0 Ω1 Ω2

d d

d d


where the first row is valued in g and the second row is valued in g∗. Call fields in the first row A and fields
in the second row B; then we can define BF-theory

S(A,B) =

∫
Σ

B(dA+
1

2
[A ∧A]).

The boundary complex is

E∂ =

−1 0 1

Ω0 Ω1 g

Ω0 Ω1 g∗

d

d

There are two immediately apparent boundary conditions: either the A fields survive (“LA”, Neumann) or
the B fields survive (“LB”, Dirichlet). Let’s consider LB . Then

E∂ = T ∗LB

with

S =

∫
B[A,A] ∈ L∗B ⊗ L⊗2

B .

The functions on LB are
O~(LB) ∼= O~(g∗) = U~(g) = EndUg(Ug, Ug),

where U~(g) is the deformation of the enveloping algebra given by setting

xy − yx = ~[x, y].

We could also have considered Neumann BCs: then

O(LA) ∼= C•(g) = RHomUg(C,C)

and there is no Π.

Example 5.25. From Chern-Simons theory in the bulk we can find Kac-Moody PVA and affine W (sln) on
the boundary.

From Kapustin-Witten in the bulk we can find Chern-Simons on the boundary.

From the 5d N = 2 twist we can find 4d holomorphic Chern-Simons on the boundary.

5.7 Session 7 (Justin): Tricks with SUSY algebras

Today: Learn how to read off information and make conjectures just by relating different SUSY algebras.
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5.7.1 Review of Si’s talk

Recall the 2d N = (2, 2) SUSY algebra (complextified):

C×︸︷︷︸
Spin(2)

× (C×A × C×B)︸ ︷︷ ︸
R-symmetry

n

 V2d︸︷︷︸
C1⊕C−1

·Π

C2 ⊗ S2d
+︸︷︷︸

=C+1/2

⊕C2 ⊗ S2d
−︸︷︷︸

C−1/2




with inner product on the C2 factors given by the matrix

(
0 1
1 0

)
. The C×A/B act on the C2 factors in the

odd part as follows: there is a C× action on C2 ⊕ C2, then C×A acts antidiagonally and C×B acts diagonally.

Write supercharges Qβγα with:

• α the weight under spin;

• β and γ the weights under R-symmetry;

• There is a constraint: αβγ = + (where we think of the indices as just recording the sign of the weight).

Si found two topological twists:

QA = Q++
− +Q−+

+

QB = Q++
− +Q+−

+

• Q++
− is fixed under the combined action of C× and either C×A or C×B .

• Q−+
+ is fixed under the combined action of C× and C×A.

• Q+−
+ is fixed under the combined action of C× and C×B .

Remark 5.9. The “special charge” fixed under both the A and B twists,

QH := Q++
−

is a holomorphic twist. See the exercises below.

Problem 22. We have
Im[QA,−] = Im[QB ,−] = V2d

and Im[QH ,−] is 1d; one thinks of the operator as [QH ,−] =: ∂z̄.

Remark 5.10. The holomorphic twist is available even in N = (0, 2) SUSY, gives rise to the chiral de Rham
complex (in the infinite volume limit where instanton corrections drop out of the Fukaya category).

After twisting, one gets solutions to EOM for the example of a σ-model with target X a Kähler manifold:

• H-twist: Maps(T [1]Σ, T ∗[1]X). Notation: ΣDol = T [1]Σ.

• B-twist: Maps(ΣdR, T
∗[1]X), ΣdR = (T [1]Σ, ddR).

• A-twist: Roughly,75 Maps(Σ, T ∗πT [−1]X), with differential on the target given by bracketing with π
the Poisson bivector, {π,−}.

75Quote: “The A-model is bullshit.” (It does not behave well in this formalism, problem has to do with the existence of
instanton corrections – suppose one could again consider a large volume limit, but let’s just not.)
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5.7.2 3d N = 4 SUSY

The complexified SUSY group is

Spin(3)×GR n
(
V3d ⊕Π

(
W 3d ⊗ S3d

))
where W 3d is an R-symmetry invariant 4d vector space that we must supply with a symmetric form. Let’s
understand the components of this:

• Spin(3) = SL2

• S3d = C2 is the defining representation of SL2

• V3d
∼= Sym2(S3d)

• GR = (SL2)A × (SL2)B

What about W3d? Let ω be the standard symplectic form on C2. Then we’ll take

W 3d := (C2
A, ω)⊗ (C2

B , ω) = (C2 ⊗ C2, ω ⊗ ω).

Remark 5.11. As Theo points out: there is an exceptional isomorphism Spin(4) ∼= SL2×SL2, and the above
is simply telling us how to write down this isomorphism (by choosing C4 = C2 ⊗ C2).

We’ll write supercharges as
Qαβγ = eα ⊗ eβ ⊗ eγ

where eα ⊗ eβ ∈W 3d = C2 ⊗ C2 and eγ ∈ S3d = C2.

Example 5.26. Write elements of the symmetric square as vγγ′ = eγeγ′ ∈ Sym2(S3d). Then

[Qαα̇γ , Qββ̇µ ] = εαβεα̇β̇eγeµ = εαβεα̇β̇vγµ.

Claim: 2d N = (2, 2) embeds into 3d N = 4.

SL2 (SL2)A × (SL2)B V3d = 〈e+e+, e+e−, e−e−〉 (C2 ⊗ C2)⊗ (S3d = S2d
+ ⊕ S2d

− )

C× C×A × C×B V2d = 〈e+e+, e−e−〉 (C2 ⊗ S2d
+ )⊕ (C2 ⊗ S2d

− )

standard max. torus standard

The only map not explicitly given in the diagram is the embedding of spin representations – this is given by:

e− ⊗ e+ ⊗ e+ = Q−+
+ = e+ ⊗ e+ e+ ⊗ e+ ⊗ e− = Q++

− = e+ ⊗ e−
e+ ⊗ e− ⊗ e+Q

+−
+ = e− ⊗ e+ e− ⊗ e− ⊗ e− = Q−−− = e− ⊗ e−

Problem 23. Check the commutation relations. (This involves pairings from 2d and 3d – the reason that
we wrote them in the strange way that we did was to make this computation easier.)

Corollary 5.8. The 2d N = (2, 2) supercharges QH , QA and QB all embed into 3d N = 4.

Problem 24. Compute Im[Q?,−] ⊆ V3d for ? = H,A,B.76

Problem 25. Show that the 3d N = 4 algebra embeds into the 4d N = 4 algebra. (Hint: Use the exceptional
isomorphism Spin(6) ∼= SL4.)

76Should find that Im[QA/B ,−] = V3d and dim(Im[QH ,−]) = 2, so that QH gives a holomorphic-topological twist.
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5.7.3 What does this buy you?

If you want to study boundary conditions for 3d N = 4, one good class is those that preserve 2d N = (2, 2)
at the boundary.

Mathematically: There ought to be relations between 3d N = 4 theories and ordinary mirror symmetry,
quantum cohomology, etc.

5.8 Session 8 (Dylan): Sequel to Session 6

5.8.1 A series of slogans

Slogan: Quantum field theories over M are the same as factorization BD0-algebras over M .

The factorisation algebra that we are construct associated to a QFT is

U 7→ O(E(U))[[~]], {S,−}+ ~∆ (5.1)

A precursor to this was the slogan: Classical field theories over M are the same as factorization P0-algebras
over M . This went via the construction

U 7→ O(E(U)), {S,−} (5.2)

Really though, (5.1) is more than just a QFT – it is really a quantum field theory together with a classical
field theory that is being quantised. To recover the classical theory, we can set ~ = 0. We can’t set ~ = 1,
but we can formally invert it and pass to the generic fibre.

So really our slogan should be: Quantum field theories over M are the same as factorization E0-algebras over
M .

Remark 5.12. The passage from P0 → E0 is a bit strange, but should be thought of as analogous to the
passage from P1 → E1 ∼ Ass (c.f. Rozenblyum).

One more slogan: A topological field theory over M is the same as a locally constant factorisation algebra
over M .

When M = Rn this is equivalent to an En-algebra – i.e. we are considering algebras over the operad of little
n-discs, and the multiplication induced by disc inclusion should be considered a “topological OPE map”.

5.8.2 What about boundary conditions?

On R≥0 consider a locally constant factorisation algebra. To an open interval not containing 0 ∈ R≤0 we
obtain a factoristion algebra A – but to an open interval containing 0 we assign a (potentially different) space
H, and the factorisation structure/defect OPE tells us that we must have a map

ρ : A⊗H → H

i.e. we obtain a (factorisation) A-module structure on H.

Similarly: suppose we take a 2d theory on M = R ≥ 0×R. Then the local constancy condition allows us to
define a factorisation algebra on {0} × R by extending open intervals in R to open half-discs in R ≥ 0 × R
(the space we obtain is insenstive to precisely what open set we use to extend the interval). So part of the
data is an associative algebra (the factorisation algebra on R).
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More generally: a theory on M = R≤0 × N includes as part of its data a factorisation algebra over the
boundary N . There is also an “internal” E1-algebra with E0-module associated to each open set in N ,
corresponding to the theory being “topological in the normal direction to the boundary”.

A ∈ factorization E1-algebras over N factorization algebras on M

H ∈ factorization E0-algebra over N

Remark 5.13. Classical situation: the notion of a theory which is topological normal to the boundary is a
factorisation P1-algebra on the boundary together with maps

factorization P1-algebras on N factorization P0-algebras on M

factorization P0-algebra on N

Lagrangian map

In practice the P0 widget will actually have a shifted symplectic structure, and so will know precisely what
is meant by a “Lagrangian map”.

A theory being topological in the normal direction on M = R≥0 × N is equivalent at the classical level to
the existence of a splitting

E = Ω•R≤0
� E∂

for some factorisation P1-algebra on the boundary N , O(E∂).

Example 5.27 (Chern-Simons on M = R≤0 × Σ). Here

E = Ω•M ⊗ g = Ω•R≤0
� (Ω•Σ ⊗ g).

Note that to see this has the correct shifts, recall the description in the AKSZ formalism Maps(M,BG) =
Maps(R≤0,Maps(Σ, BG)).

Definition 5.8. A (regular embedded)77 boundary condition for E is a Lagrangian subbundle L ↪→ E∂ over
N = ∂M .

Remark 5.14. Naively this looks like a bad definition – choosing a subbundle appears to be only allowing
Dirichlet boundary conditions. However, since we’re working in the BV formalism our bundle E∂ also contains
antifields, which broadens the types boundary conditions that this definition encompassing. E.g. by the
equations of motion, vanishing of an antifield can correspond to vanishing of normal derivatives for a field
and so we can obtain Neumann boundary conditions.

If we weren’t working in the first order BV formalism, this would be a pretty silly definition.

Question 7. Given a boundary condition as per above, how do we construct a map from a P1-algebra over
N to a P0-algebra over N?

Answer 5.4. N ⊃ U 7→ O(L(U)) is a a factorisation P0-algebra over N .

We need to find a Poisson structure

π ∈ PV−1(L)[1] = O(T ∗L)[1].

Equivalently, we are finding S ∈ O(T ∗L)[1] such that

• Q = {S,−} is square-zero,

77This is the assumption that deformation to the normal cone holds. Alternatively, think of it as saying that there are no
boundary degrees of freedom.
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• {Soriginal + S, Soriginal + S} = 0 (the classical master equation – here Soriginal is the Hamiltonian for
the original theory)78

Since L is Lagrangian (and we are working in formal geometry) we can think of

E∂(T ∗L,Q = {S,−}) =: T ∗πL.

Upshot: This description of E∂ gives us the Poisson bivector π.

So:

• Given the data (E , L) we can produce π.

• But also, given (L, π) we can produce79 T ∗πL =: E∂ , E = Ω•R� E∂ . This is the “Universal Bulk Theory”
– a universal theory with given boundary theory and a canonical boundary condition.

5.8.3 Interval compactifications

What happens if you have a bulk theory which is topological in the normal direction on [0, 1] ×N and two
boundary conditions? Since we are topological in the normal direction, we should be able to “squish the
theories together to produce a new theory”.

What do we have?

• A factorisation E1-algebra A over N .

• Two factorisation modules M1 and M2.

• So we just take M1 ⊗A M2 – this is our new factorisation algebra (so our new “squished together”
theory).

There is a dual fibre product picture:

L×E∂ L = L×E∂ E ×E∂ L.

Note that if E∂ is 0-shifted, the resulting fibre product is (-1)-shifted.

Example 5.28. We could take

E = T0 Maps([0, 1]dR × RdR, T
∗[1]X)

E∂ = T0 Maps(RR, T
∗[1]X)

L = T0 Maps(RdR, X) ⊂ E∂

Then
L×E∂ L = T0 Maps(RdR, T

∗X).

For another boundary condition: take a 1-form, assume of the form dW (exact), and take

L̃ = T0 Maps(RdR,Graph(dW )).

Then
L×E∂ L̃ = T0 Maps(RdR,Crit(W ))

is SQM with superpotential W .80

78This is equivalent to π being a Poisson bivector.
79T ∗πL is the derived Poisson centre of L – the P0 version of Hochschild cochains.
80Up to (nontrivial!) questions of the state-operator correspondence/existence of a Serre functor on the category of boundary

conditions, this is the procedure of taking homs between boundary conditions.
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Now: we could also imagine the situation where the theory continues to the left of the boundary at 0 – then
there would be another algebra B, and M1 would be a B-A-bimodule.

Dylan finished by drawing the following picture and giving an inspiring speech about how we can get cool
maths from string theory (Figure 48).

5.9 Session 9 (Justin): Defects in higher dimensional TFTs

5.9.1 Last time

There are embeddings
2dN=(2,2) ⊂ 3dN=4 ⊂ 4dN=4

There are three square-zero supercharges we can use to twist.

Q: How many translations are in the cohomology?

2d 3d 4d
QH 1 2 3
QA 2 3 4
QB 2 3 4

5.9.2 Warmup: B-model

Consider the B-model on X Calabi-Yau, OX ' ωX [−d].

Classical EOM:
EOM(Σ) = Maps( ΣdR︸︷︷︸

(T [1]Σ,ddR)

, T ∗X)

Want to produce a 2d TQFT,
Z : 2− Cob→ Cat

Ansatz: Z(M) = GQ(EOM(M × Rd)) where dim(M) = d = 2. (Geometric Quantization)

Okay: but how do I get (higher) categories out of geometric quantization?

The AKSZ formalism tells us that

Maps

 Md
dR︸︷︷︸

compact

× R2−d
dR︸ ︷︷ ︸

irrelevant

, T ∗[1]X


has a symplectic form of degree 1− d. So:

• If I plug in a point then I get a symplectic form of degree 1, and I want to produce a category. Hmm.

• If I plug in a circle then I get a symplectic form of degree 0, and I want to produce a vector space. I
know how to do this – usual geometric quantisation.

• If I plug in a surface then I get a symplectic form of degree -1, and I want to produce a number.

• So to an n-shifted symplectic stack I want to associate an n-category.

164



Figure 48: Gauge theories and boundary conditions from branes in string theory.
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If I consider manifolds with boundary, with “inward” and “outward” pointing assignments, we obtain a
Lagrangian correspondence

EOM(M)

EOM(∂inM) EOM(∂outM)

Rather than going into the details for how we geometrically quantize n-shifted symplectic objects, Justin
presents the following –

Ansatz:81

GQ(T ∗[n]X) = nQCoh(X)

I.e. want:

T ∗[−1]X 1

T ∗X OX
T ∗[1]X QCoh(X)

T ∗[2]X QC Shv Cat(X) = (QCoh(X),⊗)-Mod

Remark 5.15. For T ∗[2]X we really want the KRS82 2-category, but so far this is our best approximation.

So now:

Z(pt) = GQ(EOM(pt)) = GQ(T ∗[1]X) = QCoh(X)

Z(S1) = GQ(EOM(S1)) = GQ(Maps(S1
dR, T

∗[1]X)) = Γ(LX,OLX) = (PV(X))∨ ' PV(X)[d]

Above we have use that
Maps(S1

dR, T
∗[1]X) = T ∗Maps(S1

dR, X)︸ ︷︷ ︸
LX=T [−1]X

where the equality LX = T [−1]X holds if X is actually a scheme, and also that X is Calabi-Yau (to identify
PV with a shift of its linear dual).

Remark 5.16. In general we need to actually also consider the data of a framing83 on our spacetime manifold,
so we really have π1(SO(2)) = Z worth of circles in our theory. Label them as S1

(n) – n = 0 corresponds to
the blackboard framing, n = 1 is cylinder framing, etc. Then we assign

Z(S1
(n)) = Γ(LX,π!ω⊗nX )

where π : LX → X is the “basepoint map”. Our Calabi-Yau condition means that we don’t need to worry
about these subtleties.

Remark 5.17. Justin has also lied about IndCoh versus QCoh subtleties.

5.9.3 Let’s talk about line operators in 2d!

The link of a line in 2d is S0 (i.e. two points). Let’s rewrite the theory as maps into maps from S0. Rewrite
the complement of a straight line in R2 as the product

R>0 × S0 × R
81Corresponds to polarising by the fibres of the cotangent bundle.
82Kapustin-Rosansky-?
83In this situation we mean a normal framing of Md in Md × Rd−2.
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and use the mapping stack adjunction to write the space of fields in the B-model as

Maps(R≥0 × RdR,Maps((S0)dR, T
∗[1]X)︸ ︷︷ ︸

T∗[1]X×X=EOM(S0)

)

So the category of line operators is
QCoh(X ×X) = Z(S0).

What is the trivial line?

S0 ↪→ I, so we get

EOM(I) EOM(S0)

T ∗[1]X T ∗[1](X ×X)

N∗X [1](X ×X)

∆

Now we’re trying to quantise a Lagrangian. We haven’t done this before, so again rather than go into detail
Justin will make an –

Ansatz: Given f : Y → X, GQ(N∗Y [n]X) = f∗(nOY ), where

1OY = OY , 2OY = QCoh(Y ), · · ·

So by our ansatz,
GQ(I) = ∆∗OX ,

thought of as an integral kernel.

Remark 5.18. Should also note that the trivial line should be the monoidal unit for the tensor structure on
lines coming from the “open pair of pants”.

What does it mean to compactify BCs on an S0?

AKSZ tells us that

N∗Maps(M,Y )[1] Maps(M,X) = Maps(M,N∗Y [1]X)→ Maps(M,T ∗[1]X)

is Lagrangian. The geometric quantisation of this Lagrangian is f∗(OY×Y ).

Remark 5.19. Classical boundary conditions are (basically) only Lagrangians in the target. (Further discus-
sion in this digression was deferred to later.)

5.9.4 3d N = 4 σ-models

3d N = 4 σ-models are defined by T ∗X thought of as a holomorphic symplectic variety/hyperkähler manifold.
In a slight generalisation of the B-model84

EOM3d
B (M3) = Maps(M3

dR, T
∗[2]X).

We want to make an ansatz as to what the TQFT Z : 3− Cob→ 2 Cat will be.

Local operators.

84Which has a Z/2Z grading problem.
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A local operator is an insertion at a point. The link of a point in 3d is an S2. So (leaving implicit the crossing
with extra real dimensions to bring us to the correct dimension for the QFT),

Z(S2) = GQ
(
Maps(S2

dR, T
∗[2]X)

)
whigh if X is a scheme is just T ∗T ∗[2]X, so that Z(S2) = OT∗[2]X – not so interesting.

Line operators.

The link of a line in 3d is an S1; do our rewriting trick for the complement of the line,

R× R≥0 × S1

and then use the mapping stack adjunction to rewrite

Z(S1) = GQ(Maps(S1
dR, T

∗[2]X)).

We usually have that
Maps(S1

dR, T
∗[2]X) = T ∗[1] Maps(S1

dR, X),

and if X is a scheme we have
Maps(S1

dR, T
∗[2]X) = T ∗[1]T ∗[2]X.

So there are two (obvious) possibilities for which polarisation to choose in order to geometrically quantise,
and we get85

Z(S1) =

{
QCoh(T ∗[2]X)
QCoh(T [−1]X)

However, according to BZ-Nadler these two categories are equivalent (Koszul dual).

Moral: In ordinary quantum mechanics, there is a Fourier transform relating two different polarisations of
R2,

L2(Rp) ' L2(Rq).

In the categorified story, the Fourier transform implies Koszul duality.86

What is the trivial line?

Consider S1 ↪→ D2. In one choice of polarisation the map

T ∗[2]X → Maps(S1
dR, T

∗[2]X) = T ∗[1]T ∗[2]X

is just the inclusion of the zero section. So in this polarisation the trivial line is just OT∗[2]X ∈ QCoh(T ∗[2]X).
In the other polarisation,

T ∗[2]X → Maps(S1
dR, T

∗[2]X) = T ∗[1] Maps(S1
dR, X)← N∗Maps(D2

dR,X)[1] Maps(S1
dR, X)

and the trivial line corresponds to OX ∈ QCoh(T [−1]X︸ ︷︷ ︸
LX

). This is good – these two objects are in fact

exchanged by Koszul duality.

Remark 5.20. If you’re careful with the functional analysis, you’ll find that Justin told a lie! The two
polarisations we’ve chosen don’t match, and correcting for this one finds that the formula for the trivial line
in the second (loop space) perspective is off by some powers of the canonical bundle.

85Up to issues of functional analysis of sheaves.
86This will make BZ very happy.
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5.9.5 3d A-model

For any algebraic curve C, some version of the A-twist has space of fields

T ∗[−1] Maps(C×M1
dR, XdR).

To find local operators in this story, we actually need a holomorphic version of the sphere: write

S2 = D ∪D× D

where D = SpecC[[t]] and D× = SpecC((t)). BFN tell us that the space of local operators in this theory is
H•(Maps(B, X)) where B is a particular space.
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