Atiygh-Singer Index Theorem Seminar.
The Heat and Wave Equations
(Valentin Zakharevich).
Heat Equation.
On \mathbb{R}^{n}, the heat equation is

$$
\frac{\partial u_{t}}{\partial t}-\Delta u_{t}(x)=0
$$

so let's think about the cane on \mathbb{R}. Jake the Fourier transform,

$$
\widehat{u}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} u(x) e^{-i x\}} d x
$$

then the (HE) becomes

$$
\frac{\partial \hat{u}}{\partial t}+\xi^{2} \hat{u}_{t}=0
$$

with solution $\hat{u}_{t}(\xi)=C(\xi) e^{-t \xi^{2}}$

Let V_{t} be such that

$$
\begin{aligned}
& V_{0}=\delta_{0} \\
& \frac{\partial v}{\partial t}-\Delta v_{t}=0
\end{aligned}
$$

Then for any f,
$V_{t} * f$ is a solution of (HE) with $V_{0} * f=f$.
Now, $\widehat{\delta}_{0}=\frac{1}{\sqrt{2 \pi}}$, so,

$$
\begin{gathered}
\hat{V}_{t}(\xi)=\frac{1}{\sqrt{2 \pi}} e^{-t \xi^{2}} ; \text { and, } \\
V_{t}(x)=\frac{1}{\sqrt{2 \pi}} \int \frac{1}{\sqrt{2 \pi}} e^{-t \xi^{2}} e^{i x \xi} d \xi=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}} \text { Fundamental }
\end{gathered}
$$

Let's extend to Clifford Bundles...

Let M be a compact Riemannian manifold, $S \rightarrow M$ a Clifford bundle.

We have seen the motivation $D^{2 \prime \prime}="-\Delta$.
So we define for Clifford bundles

$$
\begin{aligned}
& \frac{\partial s}{\partial t}+D_{s}^{2}=0 \quad(H . E .) \\
& \frac{\partial s}{\partial t}-i D_{s}=0 \quad(W \cdot E .)
\end{aligned}
$$

s a section of Clifford bundle

Recall that the Classical W.E. is

$$
\frac{\partial^{2} s}{\partial t^{2}}-\Delta s=0
$$

Theorem:
The (WE) and (HE) have unique solutions for $S_{0} \in L^{2}(S)$ for

$$
\begin{aligned}
& t>0 \quad(H E), \\
& t \in \mathbb{R} \quad(W E) .
\end{aligned}
$$

The solution satisfies: $\cdot\left\|s_{t}\right\|<\left\|s_{0}\right\|$ for $t>0$ (HE),

$$
\cdot\left\|s_{t}\right\|=\left\|s_{0}\right\| \quad(W E)
$$

Proof:

$$
\begin{aligned}
\frac{\partial}{\partial t}\left\|s_{t}\right\|^{2} & =\left\langle\frac{\partial}{\partial t} s_{t}, s_{t}\right\rangle+\left\langle s_{t}, \frac{\partial}{\partial t} s_{t}\right\rangle=-\left\langle D^{2} s_{t}, s_{t}\right\rangle-\left\langle s_{t}, D_{s_{t}}^{2}\right\rangle \\
& =-2\left\|D s_{t}\right\|^{2}
\end{aligned}
$$

Then existence follows by using the solution operators)

$$
\begin{array}{ll}
S_{t}=e^{-t D^{2}} S_{0} & (H E), \\
S_{t}=e^{i t D} S_{0} & (W E)_{0}
\end{array}
$$

Since $e^{-t D^{2}}$ is a smoothing operator, there exists $k_{t}(p, q)$ a section of $S_{\otimes} S^{*}$ such that

$$
e^{-t p^{2}} s_{0}(p)=\int_{M} k_{t}(p, q) s(q) \operatorname{vol}(q)
$$

and if $s_{0} \in H_{l}$ then $s_{t} \longrightarrow s_{0}$ in H_{l}.
Define H_{l} as duad of H_{C} via \langle,\rangle_{0},

$$
\underset{\psi \in H_{l}}{\varphi \in C^{\infty}} \quad \quad \psi \cdot \varphi=\langle\psi, \varphi\rangle .
$$

If l is "big enough", Hen le delta function live in H_{-l}. The solution operator then takes

$$
e^{-t D^{2}}: H_{l} \rightarrow H_{l}, H_{-l} \rightarrow H_{-l} \text {. }
$$

Theorem:
The heat horned $k_{t}(p, q)$ satisfies operator asocial with this handle).
(2) $\int_{M} k_{t}(p, q) s(q)$ vol $(q) \rightarrow s(p)$ uniformally for s smooth.

Moreover, $k_{t}(p, q)$ is the unique such section.
Prof:
Denote $H=\frac{\partial}{\partial t}+D_{p}^{2}$. If we can show that

$$
\underset{=0}{H \int_{M} \int_{k_{t}}(p, q) s_{0}(q) v d(q)}=\int_{M}\left(H_{4}(p, q) s_{0}(q) v d(q),\right.
$$

and since the integrand in uniformly diffenatiable w.r.t. t, we car bring $\frac{\partial}{\partial t}$ inside the integral, and it is sufficient to show that

$$
D \iint_{M} k_{t}(p, q) s_{0}(q) v o l(q)=\iint_{M}\left(D_{p} k_{t}(p, q)\right) s_{0}(q) v o \mid(q)
$$

Locally we can write $D_{S}=\sum_{i} e_{i} \nabla_{i} s$, and we need only show that

$$
\nabla_{i} \int_{M} k_{\tau}(p, q) s_{0}(q) v o l(q)=\int_{M}\left(\nabla_{i} k_{t}(p, q)\right) s(q) \text { vol }(q) .
$$

Again by inform differentiability, ca bring ∇_{i} inside,

$$
\nabla_{i} \int_{M} k_{t}(p, q) s_{o}(q) v o l(q)=\int_{M} \nabla_{i}\left(k_{t}(p, q) s_{0}(q)\right) v o l(q) .
$$

Now we hove to actually do a calculation. Dy:

$$
\begin{aligned}
& \nabla_{i}\left(k_{t}(p, q) \sigma\right)=\left(\nabla_{i, p} k_{t}(p, q)\right) \delta, \quad s(q)=\sigma \in S_{q} . \\
& k_{t}(p, q)=v \otimes \varphi, \leftarrow \text { wite } k_{t} \text { as sum ot there gas, we linearity } \\
& \quad \sigma \in S_{q}, \quad v \in \Gamma(s), \varphi \in \Pi\left(\delta_{i}^{*}\right) \\
& \nabla_{i}(v \otimes \varphi)=\nabla_{i} v \otimes \varphi+v \otimes \partial_{i} \varphi,
\end{aligned}
$$

so, $\nabla_{i}(v \otimes \varphi) \sigma=\nabla_{i} v \otimes \varphi(\sigma)+v \otimes \partial_{i} \varphi(6)$. Applying σ first, we get

$$
\begin{aligned}
\nabla_{i}(v \otimes \varphi(\delta))=\nabla_{i}(\varphi(\delta) v) & =\underbrace{\varphi(\delta) \nabla_{i} v+\partial_{i} \varphi(\delta) v} \\
& =\nabla_{i}(v \otimes \varphi) b
\end{aligned}
$$

proving (1).
(2) is "obvious".

Uniqueness: Suppose k_{t}^{\prime} is another such heat kernel, then

$$
\left(k_{t}-k_{t}^{\prime}\right) s_{0}=s_{t}, \quad\left\|s_{t}\right\|<\left\|s_{0}\right\|,
$$

and $\lim _{t \rightarrow 0} s_{t}=0 \quad\left(\left\|s_{t}\right\|<\varepsilon\right.$ for any $\left.\varepsilon\right)$. So $k_{t}=k_{t}^{\prime}$.

Finite Propogation Speed.
Theorem:
For any $s \in C_{c}^{\infty}(S)$, the support of $e^{i t D} S$ lies within distance $|t|$ of $\operatorname{supp}(s)$.
Proof:
It suffices to show that
$\int_{B(m, R-t)}| |^{2}$ is decreasing for $B(m, R)$ geodesic nolde of of m.
Why? Stare at the diagram

So let's prove that the $f^{n c}$ is decreasing. We have that

$$
\begin{aligned}
& \left\langle i D S_{t}, S_{t}\right\rangle+\left\langle s_{t}, i D S_{t}\right\rangle=i d_{\omega}^{*} \text {, where } \\
& \omega(x)=\left\langle X_{S_{t}, S_{t}}\right\rangle
\end{aligned}
$$

Now,
by Comery-Schaors, son tho
Def $=: S(\mathbb{R})=$ smooth function which decay forster than any rational function

$$
\zeta\left\|X^{\alpha} D^{\beta} f\right\|_{L^{\infty}<+\infty}
$$

If $f(x)=\frac{1}{\sqrt{2 \pi}} \int \hat{f}(\xi) e^{t \times \xi} d \xi$, can consider

$$
f(D)=\frac{1}{\sqrt{2 \pi}} \int \hat{f}(\xi) e^{i \xi D} d \xi .
$$

Or define it in a weak sense:

$$
\langle f(D) x, y\rangle=\frac{1}{\sqrt{2 \pi}} \int \hat{f}(\xi)\left\langle e^{i \xi D} x, y\right\rangle d \xi .
$$

Proposition:
Suppose $\operatorname{supp}(\hat{f}) \in[-c, c]$. Then $\langle f(D) x, y\rangle=0$ for $\operatorname{dist}(\operatorname{supp}(x), \operatorname{supp}(y))>c$.

Recall the statement from ChS that
$f \mapsto$ kernel $f(D))$ is continuous.
Our next proposition is...
Proposition:
The kernel of $f(t D)$ outside of $\triangle C M \times M\left(C S \otimes S^{*}\right)$ tends to zero in the C^{∞}-topology.
Idea of proof:
We write $f_{u}=f_{u, 1}+f_{u, 2}$ where
$\hat{f}_{u, 2}$ is supported on $[-\delta, \delta]$, and $\hat{f}_{u, 2} \rightarrow 0$ in $S(\mathbb{R})$.

Approximating the heat kernel for a Clifford bundle.
Def $=$ Let $f: \mathbb{R}^{+} \rightarrow E, E$ a Banach space. Then
$f \sim \sum_{n=0}^{\infty} a_{n}$ (asymptotic expansion)
if for all n, there exists l_{n} such that for all $1>l_{n}$,

$$
\left\|f(t)-\sum_{i=0}^{l} a_{i}(t)\right\|<C_{l, n}|t|^{n}
$$

for t small enough
HE Theorem:
(i) There exists an asymptotic expansion for k_{t} of the form

$$
k_{t} \sim h_{t}\left(\Theta_{0}(p, q)+t \Theta_{1}(p, q)+\cdots\right)
$$

where Θ_{i} are smooth sections of $S \otimes S^{*}$,

$$
h_{t}(p, q)=\frac{1}{(4 \pi t)^{3 / 2}} e^{-d(p, q)^{2} / 4 t}
$$

(ii) The expansion is valid in $C^{k}\left(S \otimes S^{*}\right)$ for all $h>0$.
(iii) Θi locally depends on STUFF (see Roe), and

$$
\Theta_{0}(p, p)=I d, \quad \Theta_{1}(p, p)=\frac{1}{6} K(p)-K(p) .
$$

